精英家教网 > 高中数学 > 题目详情
已知双曲线C1的方程为x2-=1,椭圆C2长轴的两个端点恰好为双曲线C1的两个焦点.

(1)如果椭圆C2的两个焦点又是双曲线的两个顶点,求椭圆C2的方程;

(2)如果椭圆C2的方程为=1,且椭圆C2上存在两点A、B关于直线y=x-1对称,求b的取值范围.

解:(1)在双曲线C1的方程=1中a=1,c=3,

则椭圆C2的方程为+=1.

(2)椭圆C2的方程为=1(0<b<9),

A、B点所在直线方程设为y=-x+m,

代入椭圆C2的方程得(b+9)x2-18mx+9(m2-b)=0.

由Δ=(18m)2-36(b+9)(m2-b)>0得m2<b+9.

设A(x1,y1)、B(x2,y2),那么

x1+x2=,=,

=.将=,=

代入直线y=x-1,得m=;再将m=代入m2<b+9,得b2-19b+72>0.

解得b>(舍去)或b<.

∵0<b<9,∴0<b<.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的方程为
x2
4
+y2=1,双曲线C2的左、右焦点分别为C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点.
(Ⅰ)求双曲线C2的方程;
(Ⅱ)若直线l:y=kx+
2
与椭圆C1及双曲线C2都恒有两个不同的交点,且l与C2的两个交点A和B满足
OA
OB
<6(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的方程是
x2
4
+y2=1
,双曲线C2的左、右焦点分别为C1的左、右顶点,C2的左、右顶点分别为C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A,B,且
OA
OB
>2
(O为原点),求k的取值范围;
(3)设P1,P2分别是C2的两条渐近线上的点,点M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1的渐近线方程是y=±
3
3
x,且它的一条准线与渐近线y=
3
3
x及x轴围成的三角形的周长是
3
2
(1+
3
)
.以C1的两个顶点为焦点,以C1的焦点为顶点的椭圆记为C2
(1)求C2的方程;
(2)已知斜率为
1
2
的直线l经过定点P(m,0)(m>0)并与椭圆C2交于不同的两点A、B,若对于椭圆C2上任意一点M,都存在θ∈[0,2π],使得
OM
=cosθ•
OA
+sinθ•
OB
成立.求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如下图,已知双曲线C1的方程为=1(a>0,b>0),A、B为其左、右两个顶点,P是双曲线C1上的任意一点,引QB⊥PB,QA⊥PA,AQ与BQ交于点Q.

(1)求Q点的轨迹方程;

(2)设(1)中所求轨迹为C2,C1、C2的离心率分别为e1、e2,当e1时,求e2的取值范围.

查看答案和解析>>

同步练习册答案