精英家教网 > 高中数学 > 题目详情
16.设若a≠b,a>0,b>0,且alg(ax)=blg(bx),则(ab)lg(abx)=1.

分析 利用对数的运算法则,通过取对数法进行化简即可.

解答 解:∵不相等的两个正数a,b满足alg(ax)=blg(bx)
∴两边同时取对数得lgalg(ax)=lgblg(bx)
即lg(ax)lga=lg(bx)lgb,
即(lga+lgx)lga=(lgb+lgx)lgb,
即lg2a+lgalgx=lg2b+lgxlgb,
即(lg2a-lg2b)+lgx(lga-lgb)=0,
即(lga+lgb)(lga-lgb)+lgx(lga-lgb)=0,
即(lga-lgb)(lga+lgb+lgx)=0,
∵a≠b,
∴lga+lgb+lgx=0,即lg(abx)=0,
则abx=1,
则(ab)lg(abx)=(ab)lg1=(ab)0=1.
故答案为:1.

点评 本题主要考查指数幂和对数的化简,利用取对数法是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.计算:($\frac{4}{9}$)${\;}^{\frac{3}{2}}$+(-$\frac{27}{64}$)${\;}^{-\frac{2}{3}}$-6×(5$\frac{1}{16}$)${\;}^{-\frac{3}{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知|$\overrightarrow{AB}$|=8,|$\overrightarrow{AC}$|=6,∠BAC=$\frac{π}{3}$,$\overrightarrow{AD}$=$\overrightarrow{DB}$,$\overrightarrow{AE}$=2$\overrightarrow{EC}$,线段BE与线段CD交于点G,则|$\overrightarrow{AG}$|的值为(  )
A.4B.$\sqrt{19}$C.2$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.45°的弧度制表示为(  )
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知1gx+1g(2y)=1g(x+4y+a)
(1)当a=6时求xy的最小值;
(2)当a=0时,求x+y+$\frac{2}{x}$+$\frac{1}{2y}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若sin$\frac{α}{2}$=$\frac{1}{2}$,则cosα等于 (  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.±$\frac{1}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设f(x)在区间[a,b]上连续,证明:${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{b}$f(a+b-x)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设△ABC的内角A、B、C、所对的边分别为a、b、c,已知a=1,b=2,cosC=$\frac{1}{4}$.
(Ⅰ)求△ABC的周长;
(Ⅱ)若f(x)=sin(2x+C),求f($\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知M(2,0),N(0,-2),C为MN中点,点P满足CP=$\frac{1}{2}$MN.
(1)求点P构成曲线的方程.;
(2)是否存在过点(0,-1)的直线l与(1)所得曲线交于点A、B,且与x轴交于点Q,使$\overrightarrow{QA}$•$\overrightarrow{QB}$=3,若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案