精英家教网 > 高中数学 > 题目详情
19.如图,M为曲线y=-$\frac{4}{x}$上的一点.过点M作x轴、y轴的垂线.垂足分别为E、F.分别交直线y=$\frac{\sqrt{3}}{3}$x+m于点D、C两点.若直线y=$\frac{\sqrt{3}}{3}$x+m与y轴交于点A.与x轴相交于点B;
(1)若四边形MEOF为正方形,求M的坐标;
(2)求AD•BC的值.

分析 (1)利用四边形MEOF为正方形,设出M的坐标,代入求解即可.
(2)先设M点的坐标为(a,),则把y=代入直线y=-x+m即可求出C点的纵坐标,同理可用a表示出D点坐标,再根据直线y=-x+m的解析式可用m表示出A、B两点的坐标,再根据两点间的距离公式即可求出AD•BC的值.

解答 解:(1)因为四边形MEOF为正方形,
设M(-a,a),a>0,代入曲线y=-$\frac{4}{x}$,
可得a=$\frac{4}{a}$,解得a=2,M的坐标(-2,2).
(2)设M点的坐标为(a,$-\frac{4}{a}$),a<0
∵直线y=$\frac{\sqrt{3}}{3}$x+m与y轴交于点A,与x轴相交于点B,
∴A点坐标为(0,m),B点坐标为(-$\sqrt{3}$m,0),
∵C和M点的纵坐标相同为$-\frac{4}{a}$,
∴点C的横坐标为-$\sqrt{3}m-\frac{4\sqrt{3}}{a}$,
∴点C的坐标为(-$\sqrt{3}m-\frac{4\sqrt{3}}{a}$,$-\frac{4}{a}$),
同理可得D点的坐标为(a,$\frac{\sqrt{3}}{3}a+m$),
∴AD=$\sqrt{{a}^{2}+({\frac{\sqrt{3}}{3}a)}^{2}}$=$-\frac{2\sqrt{3}a}{3}$,BC=$\sqrt{(-\frac{4\sqrt{3}}{a})^{2}+(\frac{4}{a})^{2}}$=$-\frac{8}{a}$,
∴AD•BC=$-\frac{2\sqrt{3}a}{3}×(-\frac{8}{a})$=$\frac{16\sqrt{3}}{3}$,
故答案为:$\frac{16\sqrt{3}}{3}$.

点评 本题主要考查反比例函数的综合题,熟练掌握一次函数及反比例函数的性质很重要,先设出M点坐标,用M点的坐标表示出C、D两点的坐标是解答此题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知f(x)=logacos(2x-$\frac{π}{3}$)(其中a>0且a≠1).
(1)求f(x)的单调区间.
(2)试确定f(x)的奇偶性和周期性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=cos2(x-$\frac{π}{6}$)-sin2x,其中x∈R.
(1)求函数f(x)的值域;
(2)已知α为第二象限角,且f($\frac{α}{2}$-$\frac{π}{6}$)=$\frac{\sqrt{3}}{3}$,求$\frac{1+cos2α-sin2α}{\sqrt{2}sin(α-\frac{π}{4})}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求值:
(1)cos20°•cos40°•cos80°;
(2)tan70°•cos10°•($\sqrt{3}$tan20°-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设y=f(x)是定义在实数集R上的函数,且满足f(-x)=f(x)与f(4-x)=f(x),若当x∈[0,2]时,f(x)=-x2+1,则当x∈[-6,-4]时,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在正方形ABCD中,AB=AD=2,M,N分别为边BC,CD上的两个动点且MN=$\sqrt{2}$,则$\overline{AM}$•$\overline{AN}$的取值范围为(  )
A.[4,8-2$\sqrt{2}$]B.[4-2$\sqrt{2}$,8]C.[4,8+2$\sqrt{2}$]D.[4-2$\sqrt{2}$,8-2$\sqrt{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若实数x,y满足|x|+|y|≤1,则|4x+y-2|+|3-x-2y|的最小值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知数列{an}的前n项和为Sn=2n-1,数列{bn}满足b1=0,bn+1-bn=2n(n∈N*
(1)求数列{an},{bn}的通项公式;
(2)若Cn=$\frac{{a}_{n}•{b}_{n}}{n}$,求数列{Cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设抛物线y2=2px(p>0)的焦点为F,其准线和x轴的交点为C,经过点F的直线l与抛物线相交于A、B两点,若CB⊥AB,则|AF|-|BF|=(  )
A.$\frac{P}{2}$B.-$\frac{P}{2}$C.2PD.-2P

查看答案和解析>>

同步练习册答案