精英家教网 > 高中数学 > 题目详情
设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Cn=(Sn+1)(nbn-λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.
【答案】分析:(Ⅰ)利用a1=1,S4=5S2,求出数列的公比,即可求数列{an}的通项公式;通过,推出,利用累积法求解{bn}的通项公式.
(Ⅱ)求出等比数列的前n项和,化简Cn=(Sn+1)(nbn-λ),推出Cn+1-Cn,利于基本不等式求出数列{Cn}是单调递减数列,求实数λ的取值范围.
解答:(本题满分14分)
解:(Ⅰ)由S4=5S2,q>0,得  …(3分)
(n>1),
则得
所以,当n=1时也满足.  …(7分)
(Ⅱ)因为,所以,使数列{Cn}是单调递减数列,
对n∈N*都成立,…(10分)
,…(12分)

当n=1或2时,,所以.     …(14分)
点评:本题考查等比数列与等差数列的综合应用,累积法的应用以及数列的函数的特征的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁波二模)设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,Tn=n2bn,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Cn=(Sn+1)(nbn-λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设公比小于零的等比数列{an}的前n项和为Sn,且a1=-1,S3=3a3
(I)求数列{an}的通项公式;
(II)若数列{bn}满足bn=an+2n-1,求数列{bn}的前n项Tn

查看答案和解析>>

科目:高中数学 来源:2013-2014学年浙江省高三上学期第三次统练理科数学试卷(解析版) 题型:解答题

设公比大于零的等比数列的前项和为,且,数列的前项和为,满足

(Ⅰ)求数列的通项公式;

(Ⅱ)满足对所有的均成立,求实数的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2013年浙江省宁波市高考数学二模试卷(理科)(解析版) 题型:解答题

设公比大于零的等比数列{an}的前n项和为Sn,且a1=1,S4=5S2,数列{bn}的前n项和为Tn,满足b1=1,,n∈N*
(Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设Cn=(Sn+1)(nbn-λ),若数列{Cn}是单调递减数列,求实数λ的取值范围.

查看答案和解析>>

同步练习册答案