精英家教网 > 高中数学 > 题目详情

数列{-n-2}的最大项为


  1. A.
    -2
  2. B.
    -3
  3. C.
    -4
  4. D.
    不存在
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的通项公式为an=pn+q(n∈N*,P>0).数列{bn}定义如下:对于正整数m,bm是使得不等式an≥m成立的所有n中的最小值.
(Ⅰ)若p=
1
2
,q=-
1
3
,求b3
(Ⅱ)若p=2,q=-1,求数列{bm}的前2m项和公式;
(Ⅲ)是否存在p和q,使得bm=3m+2(m∈N*)?如果存在,求p和q的取值范围;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,an+1=
2an-1
an
 
(n∈N+)

(1)证明{
1
an-1
}
为等差数列,并求an
(2)若cn=(an-1)•(
8
7
)n
,求数列{cn}中的最小值.
(3)设f(n)=
nan+4     n为奇数
3
an-1
+2  n为偶数
(n∈N+),是否存在m∈N+使得f(m+15)=5f(m)成立?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
ax+1
3x-1
,且方程f(x)=-4x+8有两个不同的正根,其中一根是另一根的3倍,记等差数列{an}、{bn}  的前n项和分别为Sn,Tn
Sn
Tn
=f(n)
(n∈N+).
(1)若g(n)=
an
bn
,求g(n)的最大值;
(2)若a1=
5
2
,数列{bn}的公差为3,试问在数列{an} 与{bn}中是否存在相等的项,若存在,求出由这些相等项从小到大排列得到的数列{cn}的通项公式;若不存在,请说明理由.
(3)若a1=
5
2
,数列{bn}的公差为3,且dn=bn-(n-1),h(x)=
x
x+1
.试证明:h(d1)•h(d2)…h(dn)<
1
3n

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2•a3=45,a1+a4=14.
(1)求数列{an}的通项公式;
(2)令bn=
2Sn
2n-1
,f(n)=
bn
(n+25)•bn+1
(n∈N*),求f(n)的最大值.

查看答案和解析>>

同步练习册答案