科目:高中数学 来源: 题型:
已知椭圆
:
的面积为π
,
包含于平面区域![]()
内,向平面区域
内随机投一点Q,点Q落在椭圆内的概率为
.
(Ⅰ)试求椭圆
的方程;
(Ⅱ)若斜率为
的直线
与椭圆
交于
、
两点,点
为椭圆
上一点,
记直线
的斜率为
,直线
的斜率为
,试问:
是否为定值?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省莱芜市高三4月自主检测理科数学试卷(解析版) 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)D是过
三点的圆上的点,D到直线
的最大距离等于椭圆长轴的长,求椭圆
的方程;
(Ⅲ)在(2)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江西省、鹰潭一中高三4月联考理科数学试卷(解析版) 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为
,离心率为
,在
轴负半轴上有一点
,且![]()
(1)若过
三点的圆恰好与直线
相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点
作斜率为
的直线
与椭圆C交于
两点,在
轴上是否存在点
,使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围;如果不存在,说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源:2011-2012学年湖北省鄂州市高三期中考试文科数学 题型:解答题
设椭圆
的左、右焦点分别为
,上顶点为
,在
轴负半轴上有一点
,满足
,且
.
(1)求椭圆
的离心率;
(2)若过
三点的圆恰好与直线
相切,求椭圆
的方程;
(3)在(2)的条件下,过右焦点
作斜率为![]()
的直线
与椭圆
交于
两点,在
轴上是否存在点
使得
,如果存在,求出
的取值范围,如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:2010年黑龙江省高二上学期期中考试数学理卷 题型:解答题
(本题13分)
设椭圆
:
的左、右焦点分别为
,上顶点为
,过点
与
垂直的直线交
轴负半轴于点
,且
.
(Ⅰ)求椭圆
的离心率;
(Ⅱ)若过
、
、
三点的圆恰好与直线
:
相切,求椭圆
的方程;
(III)在(Ⅱ)的条件下,过右焦点
作斜率为
的直线
与椭圆
交于
、
两点,在
轴上是否存在点
使得以
为邻边的平行四边形是菱形,如果存在,求出
的取值范围,如果不存在,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com