精英家教网 > 高中数学 > 题目详情
(2012•泰州二模)已知圆心角为120°的扇形AOB的半径为1,C为弧AB的中点,点D、E分别在半径OA、OB上.若CD2+CE2+DE2=
26
9
,则OD+OE的最大值是
4
3
4
3
分析:设OD=a且OE=b,由余弦定理加以计算,可得CD2+CE2+DE2=2(a2+b2)-(a+b)+ab+2=
26
9
,配方整理得3ab=2(a+b)2-(a+b)-
8
9
,结合基本不等式建立不等关系,得2(a+b)2-(a+b)-
8
9
3
4
(a+b)2,最后以a+b为单位解一元二次不等式,即可得到OD+OE的最大值.
解答:解:设OD=a,OE=b,由余弦定理,得
CD2=CO2+DO2-2CO•DOcos60°=a2-a+1.
同理可得CE2=b2-b+1,DE2=a2+ab+b2      
从而得到CD2+CE2+DE2=2(a2+b2)-(a+b)+ab+2=
26
9

∴2(a2+b2)-(a+b)+ab-
8
9
=0,
配方得2(a+b)2-(a+b)-3ab-
8
9
=0,即3ab=2(a+b)2-(a+b)-
8
9
…(*)
又∵ab≤[
1
2
(a+b)]2=
1
4
(a+b)2
∴3ab≤
3
4
(a+b)2,代入(*)式,得2(a+b)2-(a+b)-
8
9
3
4
(a+b)2
设a+b=m,代入上式有2m2-m-
8
9
3
4
m2
5
4
m2-m-
8
9
≤0,得到-
8
15
≤m≤
4
3

∴m最大值为
4
3
,即OD+OE的最大值是
4
3
点评:本题给出扇形AOB的中心角为120°,弧AB中点为C,半径OA、OB上的点D、E满足CD2+CE2+DE2=
26
9
时,求OD+OE的最大值.着重考查了余弦定理、用基本不等式求最值和一元二次不等式的解法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泰州二模)已知角φ的终边经过点P(1,-2),函数f(x)=sin(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于
π
3
,则f(
π
12
)
=
-
10
10
-
10
10

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)若抛物线y2=2px(p>0)上的点A(2,m)到焦点的距离为6,则p=
8
8

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)若动点P在直线l1:x-y-2=0上,动点Q在直线l2:x-y-6=0上,设线段PQ的中点为M(x1,y1),且(x1-2)2+(y1+2)2≤8,则x12+y12的取值范围是
[8,16]
[8,16]

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)如图,三棱柱ABC-A1B1C1中,D、E分别是棱BC、AB的中点,点F在棱CC1上,已知AB=AC,AA1=3,BC=CF=2.
(1)求证:C1E∥平面ADF;
(2)若点M在棱BB1上,当BM为何值时,平面CAM⊥平面ADF?

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泰州二模)已知z=(a-i)(1+i)(a∈R,i为虚数单位),若复数z在复平面内对应的点在实轴上,则a=
1
1

查看答案和解析>>

同步练习册答案