精英家教网 > 高中数学 > 题目详情
已知Sn是数列{
1
n
}
的前n项和;
(1)分别计算S2-S1,S4-S2,S8-S4的值;
(2)证明:当n≥1时,S2n-S2n-1
1
2
,并指出等号成立条件;
(3)利用(2)的结论,找出一个适当的T∈N,使得Sr>2008.
分析:(1)较为简单,代入可计算;
(2)由(1)可猜想(2)的结论也是成立的,证明时要适当的放缩每一项(共2n-1项)都缩小为
1
2n

(3)的解答可由(2)的结论想到:新数列S2-S1,S4-S2,S8-S4…中每一项的值都大于等于
1
2
,那么4018项的和为2009,于是对于数列{an}中连同a1就有24019项,即a1+S24019-S24018>1+2009=2010.
解答:解:
(1)S2-S1=
1
2

S4-S2=
1
3
+
1
4
=
7
12

S8-S4=
1
5
+
1
6
+
1
7
+
1
8
=
168+140+120+105
840
=
533
840
.(2分)
(2)当n≥1时,S2n-S2n-1=
1
2n-1+1
+
1
2n-1+2
+…+
1
2n
(共2n-1项)
1
2n
×2n-1=
1
2
,当且仅当n=1时,等号成立.(4分)
(3)由于S1=1,当n≥1时,S2^-S2n-1
1
2

于是,要使得ST>2008,只需
1
2
+
1
3
++
1
n
>2007.
1
2
+
1
3
++
1
n
按照第一组21项,第二组22项,,第n组2n项的方式分组(6分)
由(2)可知,每一组的和不小于
1
2
,且只有n=1时等于
1
2

将这样的分组连续取2×2007组,加上a1,共有24015项,
这24015项之和一定大于1+2007=2008,
故只需T=24015,就能使得ST>2008.
点评:本题考查了数列前n项和的概念,不等式恒成立问题,合理猜想与逻辑推理的概念.对不等式的考查有一定的难度,综合性较强,需要同学有深厚的功底才能胜任本题的解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知Sn是数列{
1
n
}的前n项和,
(1)分别计算S2-S1,S4-S2,S8-S4的值;
(2)证明:当n≥1时,S2^-S2n-1
1
2
,并指出等号成立条件;
(3)利用(2)的结论,找出一个适当的T∈N,使得ST>2010;
(4)是否存在关于正整数n的函数f(n),使得S1+S2+…+Sn-1=f(n)(Sn-1)对于大于1的正整数n都成立?证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)(x∈R)满足f(x)+f(1-x)=1.
(1)求f(
1
2
)和f(
1
n
)+f(
n-1
n
)(n∈N*)
的值;
(2)若数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)
(n∈N*),求{an}的通项公式;
(3)若数列{bn}满足bn=2n+1•an,Sn是数列{bn}前n项的和,是否存在正实数k,使不等式knSn>4bn对于一切的n∈N*恒成立?若存在指出k的取值范围,并证明;若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是数列{an}的前n项和,已知a1=1,an=-Sn•Sn-1(n≥2),则Sn=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
4x
4x+2

(Ⅰ)求f(x)+f(1-x),x∈R的值;
(Ⅱ)若数列{an} 满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1)(n∈N*),求数列{an} 的通项公式;
(Ⅲ)若数列 {bn} 满足bn=2n+1•an,Sn 是数列 {bn} 的前n项和,是否存在正实数k,使不等式knSn>4bn对于一切的n∈N*恒成立?若存在,请求出k的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案