精英家教网 > 高中数学 > 题目详情
11.已知a、b、c∈R,a>b>c,a+b+c=0,若实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤4}\\{bx+ay+c≥0}\end{array}\right.$,则目标函数z=2x+y(  )
A.有最大值,无最小值B.无最大值,有最小值
C.有最大值,有最小值D.无最大值,无最小值

分析 判断直线bx+ay+c=0由y轴的交点位置,画出可行域,即可判断目标函数的最值情况.

解答 解:a、b、c∈R,a>b>c,a+b+c=0,可得bx+ay+c=0,在y轴上的截距为正,并且-$\frac{c}{a}$<2.
由实数x,y满足不等式组$\left\{\begin{array}{l}{x≥0}\\{x+y≤4}\\{bx+ay+c≥0}\end{array}\right.$,的可行域如图:
可知目标函数z=2x+y,一定存在最大值和最小值.
故选:C.

点评 本题考查线性规划的应用,判断可行域中直线的位置关系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知a=cos61°•cos127°+cos29°•cos37°,$b=\frac{{2tan{{13}°}}}{{1+{{tan}^2}{{13}°}}}$,$c=\sqrt{\frac{{1-cos{{50}°}}}{2}}$,则a,b,c的大小关系是(  )
A.a<b<cB.a>b>cC.c>a>bD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设F1、F2分别是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,P是双曲线C的右支上的点,射线PQ平分∠F1PF2交x轴于点Q,过原点O作PQ的平行线交PF1于点M,若|MP|=$\frac{1}{4}$|F1F2|,则C的离心率为(  )
A.$\frac{3}{2}$B.3C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知点A(-2,0)、B(2,0),P是平面内的一个动点,直线PA与PB的斜率之积是-$\frac{1}{2}$.
(Ⅰ)求曲线C的方程;
(Ⅱ)直线y=k(x-1)与曲线C交于不同的两点M、N,当△AMN的面积为$\frac{12\sqrt{2}}{5}$时,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若实数a>b>1,且logab+logba=$\frac{5}{2}$,则logab=$\frac{1}{2}$;$\frac{a}{{b}^{2}}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为3.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为$\frac{2}{3}$,则抛物线C2的方程为(  )
A.x2=33yB.x2=33yC.x2=8yD.x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,已知四棱锥P-ABCD,地面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E是BC的中点.
(I)证明:AE⊥PD;
(II)若AB=2,AP=2,在线段PC上是否存在点F使二面角E-AF-C的余弦值为$\frac{\sqrt{15}}{5}$?若存在,请确定点F的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知直线l1:2x-2y+1=0,直线l2:x+by-3=0,若l1⊥l2,则b=1;若l1∥l2,则两直线间的距离为$\frac{7\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\left\{\begin{array}{l}{{3}^{x-2}(x<2)}\\{lo{g}_{3}({x}^{2}-1)(x≥2)}\end{array}\right.$,若f(a)=1,则a的值是(  )
A.1或2B.2C.1D.1或-2

查看答案和解析>>

同步练习册答案