精英家教网 > 高中数学 > 题目详情
已知函数,,若f(f(-3))∈[k,k+1),k∈Z,则k=    ,当f(x)=1时,x=   
【答案】分析:由已知中分段函数的解析式,,我们将x=-3代入可求出f(-3),再代入f(f(-3)),根据对数的性质,易得到f(f(-3))的范围,进而得到k值,分别讨论两种情况下f(x)=1时,x的值,并根据对应x的取值范围进行检验,即可得到答案.
解答:解:∵
∴f(f(-3))=f(8)=log38
又∵log33<log38<log39
∴1<log38<2
故若f(f(-3))∈[k,k+1),k∈Z,k=1
若log3x=1,则x=3,满足要求;
若2-x=1,则x=0,不满足要求;
故当f(x)=1时,x=3
故答案为:1,3
点评:本题考查的知识点是分段函数的函数值,及分段函数给值求值问题,分段函数分段处理,是解答此类问题常用的方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=-x2+2bx-b
(1)当b=2时,求函数y=f(x) 在[1,4]上的最值;
(2)若函数y=f(x) 在[1,4]上仅有一个零点,求b的取值范围;
(3)是否存在实数b,使得函数y=f(x) 在[1,+∞)上的最大值是2,若存在,求出b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是R上的增函数,对实数a,b,若a+b>0,则有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x3(x>0)
(3-a)x-a(x≤0)
,给出下列四个命题:
(1)当a>0时,函数f(x)的值域为[0,+∞),
(2)对于任意的x1,x2∈R,且x1≠x2,若
f(x1)-f(x2)
x1-x2
>0恒成立,则a∈[0,3);  
(3)对于任意的x1,x2∈(0,+∞),且x1≠x2,恒有
f(x1)+f(x)2
2
<f(
x1+x2
2
);  
(4)对于任意的x1,x2∈(0,+∞),且x1≠x2,若不等式|f(x1)-f(x2)|>t|x1-x2|恒成立,则t的最大值为0.其中正确的有
(2)(4)
(2)(4)
(只填相应的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

解:因为有负根,所以在y轴左侧有交点,因此

解:因为函数没有零点,所以方程无根,则函数y=x+|x-c|与y=2没有交点,由图可知c>2


 13.证明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)与已知条件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函数y=f(x)-1的零点

(2)因为f(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,则f(-1)=f(1)与已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函数是奇函数

数字1,2,3,4恰好排成一排,如果数字i(i=1,2,3,4)恰好出现在第i个位置上则称有一个巧合,求巧合数的分布列。

查看答案和解析>>

科目:高中数学 来源:2013届内蒙古巴彦淖尔市中学高二下期中文科数学试卷(解析版) 题型:选择题

 已知函数f(x)=若f(a)+f(1)=0,则实数a的值等于(  )

A.-1            B.-3          C.1             D.3

 

查看答案和解析>>

同步练习册答案