精英家教网 > 高中数学 > 题目详情
(2013•普陀区一模)已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4
3
,b=6,cosA=-
1
3

(1)求c;
(2)求cos(2B-
π
4
)
的值.
分析:(1)由a,b及cosA的值,利用余弦定理列出关于c的方程,求出方程的解即可得到c的值;
(2)由cosA的值小于0,得到A为钝角,即sinA大于0,利用同角三角函数间的基本关系求出sinA的值,再由sinA,a及b的值,利用正弦定理求出sinB的值,由B为锐角,利用同角三角函数间的基本关系求出cosB的值,进而利用二倍角的正弦、余弦函数公式求出sin2B与cos2B的值,所求式子利用两角和与差的余弦函数公式及特殊角的三角函数值化简后,将各自的值代入计算即可求出值.
解答:解:(1)在△ABC中,由余弦定理得,a2=b2+c2-2bccosA,
即48=36+c2-2×c×6×(-
1
3
),
整理得:c2+4c-12=0,即(c+6)(c-2)=0,
解得:c=2或c=-6(舍去),
则c=2;
(2)由cosA=-
1
3
<0,得A为钝角,
∴sinA=
1-cos2A
=
2
2
3

在△ABC中,由正弦定理,得
a
sinA
=
b
sinB

则sinB=
bsinA
a
=
2
2
3
4
3
=
6
3

∵B为锐角,∴cosB=
1-sin2B
=
3
3

∴cos2B=1-2sin2B=-
1
3
,sin2B=2sinBcosB=
2
2
3

则cos(2B-
π
4
)=
2
2
(cos2B+sin2B)=
2
2
×(-
1
3
+
2
2
3
)=
4-
2
6
点评:此题考查了同角三角函数间的基本关系,正弦、余弦定理,二倍角的正弦、余弦函数公式,两角和与差的余弦函数公式,以及特殊角的三角函数值,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•普陀区一模)若函数f(x)=Asin(2x+∅)(A>0,-
π
2
<?<
π
2
)的部分图象如图,则f(0)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区一模)在△ABC中,若
AB
AC
=2
AB
BC
=-7
,则|
AB
|
=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区一模)若集合A={x|
6x+5
>1}
,集合B={-1,0,1,2,3},则A∩B=
{-1,0}
{-1,0}

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区一模)在一个袋内装有同样大小、质地的五个球,编号分别为1、2、3、4、5,若从袋中任意取两个,则编号的和是奇数的概率为
3
5
3
5
(结果用最简分数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•普陀区一模)在(2x2+
1
x
)10
的二项展开式中,常数项等于
180
180

查看答案和解析>>

同步练习册答案