【题目】某批发市场对某种商品的周销售量(单位:吨)进行统计,最近100周的统计结果如下表所示:
周销售量 | 2 | 3 | 4 |
频数 | 20 | 50 | 30 |
(1)根据上面统计结果,求周销售量分别为2吨,3吨和4吨的频率;
(2)已知每吨该商品的销售利润为2千元,ξ表示该种商品两周销售利润的和(单位:千元),若以上述频率作为概率,且各周的销售量相互独立,求ξ的分布列和数学期望.
【答案】
(1)解:根据表格可知周销售量为2吨,3吨和4吨的频率分别为 =0.2, =0.5和 =0.3
(2)解:ξ的可能值为8,10,12,14,16,且
P(ξ=8)=0.22=0.04,
P(ξ=10)=2×0.2×0.5=0.2,
P(ξ=12)=0.52+2×0.2×0.3=0.37,
P(ξ=14)=2×0.5×0.3=0.3,
P(ξ=16)=0.32=0.09.
∴ξ的分布列为
ξ | 8 | 10 | 12 | 14 | 16 |
P | 0.04 | 0.2 | 0.37 | 0.3 | 0.09 |
∴Eξ=8×0.04+10×0.2+12×0.37+14×0.3+16×0.09=12.4(千元)
【解析】(1)因为样本容量是100,根据表格可知周销售量为2吨,3吨和4吨的频数,根据所给的频数除以100,得到要求的频率.(2)ξ表示该种商品两周销售利润的和,且各周的销售量相互独立,根据表格得到变量ξ的可能取值,对应变量的事件,根据相互独立事件同时发生的概率做出分布列和期望.
【考点精析】解答此题的关键在于理解频率分布表的相关知识,掌握第一步,求极差;第二步,决定组距与组数;第三步,确定分点,将数据分组;第四步,列频率分布表.
科目:高中数学 来源: 题型:
【题目】要测量电视塔AB的高度,在C点测得塔顶的仰角是45°,在D点测得塔顶的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度是( )
A.30m
B.40m
C. m
D. m
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【选修4-5:不等式选讲】
已知f(x)=|x﹣1|+|x+2|.
(I)若不等式f(x)>a2对任意实数x恒成立,求实数a的取值的集合T;
(Ⅱ)设m、n∈T,证明: |m+n|<|mn+3|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,直三棱柱ABC﹣A1B1C1中,AC⊥AB,AB=2AA1 , M是AB的中点,△A1MC1是等腰三角形,D为CC1的中点,E为BC上一点.
(Ⅰ)若DE∥平面A1MC1 , 求 ;
(Ⅱ)求直线BG和平面A1MC1所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设 ,已知0<a<b<c,且f(a)f(b)f(c)<0,若x0是函数f(x)的一个零点,则下列不等式不可能成立的是( )
A.x0<a
B.0<x0<1
C.b<x0<c
D.a<x0<b
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义在R上的函数f(x)满足f(x+2)= f(x),当x∈[0,2]时,f(x)= ,函数g(x)=x3+3x2+m.若对任意s∈[﹣4,﹣2),存在t∈[﹣4,﹣2),不等式f(s)﹣g(t)≥0成立,则实数m的取值范围是( )
A.(﹣∞,﹣12]
B.(﹣∞,14]
C.(﹣∞,﹣8]
D.(﹣∞, ]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3,14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为( ) 参考数据: ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为( ) (参考数据: ≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)
A.12
B.24
C.36
D.48
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com