精英家教网 > 高中数学 > 题目详情
如图,四棱锥的底面为平行四边形,平面中点.

(1)求证:平面
(2)若,求证:平面.
(1)详见解析;(2)详见解析.

试题分析:(1)根据平行四边形对角线互相平分的这个性质先连接,找到的交点的中点,利用三角形的中位线平行于底边证明,最后利用直线与平面平行的判定定理证明平面;(2)先证明平面,得到,再由已知条件证明,最终利用直线与平面垂直的判定定理证明平面.
试题解析:(1)连接于点,连接
因为底面是平行四边形,所以点的中点,
的中点,所以,                     4分
因为平面平面,所以平面        6分

(2)因为平面平面,所以,         8分
因为平面平面,所以平面
因为平面,所以,                     10分
因为平面平面,所以,           12分
又因为平面平面
所以平面                              14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在多面体中,四边形是矩形,,平面.

(1)若点是中点,求证:.
(2)求证:.
(3)若.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面是正方形,侧面是正三角形,平面底面

(I) 证明:平面
(II)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,,D是AC的中点.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥P-ABCD中,PA⊥平面ABCD,E为AD的中点,ABCE为菱形,∠BAD=120°,PA=AB,G、F分别是线段CE、PB的中点.

(Ⅰ) 求证:FG∥平面PDC;
(Ⅱ) 求二面角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图1,四棱锥中,底面,面是直角梯形,为侧棱上一点.该四棱锥的俯视图和侧(左)视图如图2所示.   
(Ⅰ)证明:平面
(Ⅱ)证明:∥平面
(Ⅲ)线段上是否存在点,使所成角的余弦值为?若存在,找到所有符合要求的点,并求的长;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆台的上底半径为2cm,下底半径为4cm,圆台的高为cm,则侧面展开图所在扇形的圆心角=______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四棱锥的底面是直角梯形,,侧面为正三角形,.如图所示.

(1) 证明:平面
(2) 求四棱锥的体积

查看答案和解析>>

同步练习册答案