精英家教网 > 高中数学 > 题目详情
若函数f(x)=(a2+4a-5)x2-4(a-1)x+3的图象恒在x轴上方,则a的取值范围是(  )
分析:由题意可得(a2+4a-5)x2-4(a-1)x+3>0恒成立,按照a2+4a-5=0①,a2+4a-5≠0②两种情况进行讨论,情况①可求得a值,然后代入不等式检验即可;情况②可等价转化为不等式组解决.
解答:解:f(x)=(a2+4a-5)x2-4(a-1)x+3的图象恒在x轴上方,即(a2+4a-5)x2-4(a-1)x+3>0(*)恒成立,
(1)当a2+4a-5=0时,可得a=-5或a=1,
若a=-5,(*)式可化为24x+3>0,不恒成立;
若a=1,(*)式可化为3>0,恒成立;
(2)当a2+4a-5≠0时,可得a≠-5且a≠1,
由题意可得,
a2+4a-5>0
△=[-4(a-1)]2-4(a2+4a-5)×3<0
,即
a2+4a-5>0
a2-20a+19<0
,解得1<a<19;
综上所述,a的取值范围是:[1,19),
故选C.
点评:本题考查二次函数的性质及恒成立问题,考查转化思想、分类讨论思想,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

1、有以下命题:
(1)若函数f(x),g(x)在R上是增函数,则f(x)+g(x)在R上也是增函数;
(2)若f(x)在R上是增函数,g(x)在R上是减函数,则g(x)-f(x)在R上是减函数;
(3)若函数f(x)在区间[a,b]上递增,在(b,c)上也递增,则f(x)在[a,c)上递增;
(4)若奇函数f(x)在(0,+∞)上递减,则f(x)在(-∞,0)上也递减.
其中正确命题的个数为
3
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2-2x-a没有零点,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+2x+a-1没有零点,则实数a的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•泰安一模)已知非零向量
a
b
满足:|
a
|=2|
b
|,若函数f(x)=
1
3
x3+
1
2
|
a
|x2+
a
b
x在R上有极值,设向量
a
b
的夹角为θ,则cosθ的取值范围为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=|4x-x2|-a的零点个数为2,则a的范围是
{a|a=0或a>4}
{a|a=0或a>4}

查看答案和解析>>

同步练习册答案