精英家教网 > 高中数学 > 题目详情

甲、乙两所学校高三年级分别有1 200人,1 000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:
甲校:

分组
[70,80)
[80,90)
[90,100)
[100,110)
频数
3
4
8
15
 
 
 
 
 
分组
[110,120)
[120,130)
[130,140)
[140,150]
频数
15
x
3
2
乙校:
分组
[70,80)
[80,90)
[90,100)
[100,110)
频数
1
2
8
9
 
 
 
 
 
分组
[110,120)
[120,130)
[130,140)
[140,150]
频数
10
10
y
3
(1)计算xy的值;
(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率;
(3)由以上统计数据填写下面的2×2列联表,并判断能否在犯错误的概率不超过0.10的前提下认为两所学校的数学成绩有差异.
 
甲校
乙校
总计
优秀
 
 
 
非优秀
 
 
 
总计
 
 
 
参考数据与公式:由列联表中数据计算K2. ?
临界值表
P(K2k0)
0.10
0.05
0.010
k0
2.706
3.841
6.635

(1)x=10,y=7(2)25%,40%(3)

 
甲校
乙校
总计
优秀
15
20
35
非优秀
45
30
75
总计
60
50
110

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某学校制定学校发展规划时,对现有教师进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如表:

学历
35岁以下
35至50岁
50岁以上
本科
80
30
20
研究生
x
20
y
(1)用分层抽样的方法在35至50岁年龄段的教师中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2人,求至少有l人的学历为研究生的概率;
(2)在该校教师中按年龄状况用分层抽样的方法抽取N个人,其中35岁以下48人,50岁以上10人,再从这N个人中随机抽取l人,此人的年龄为50岁以上的概率为,求x、y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)求第二小组的频率,并补全这个频率分布直方图;
(2)求这两个班参赛的学生人数是多少;
(3)这两个班参赛学生的成绩的中位数应落在第几小组内.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某单位最近组织了一次健身活动,参加活动的职工分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的,且该组中青年人占50%,中年人占40%,老年人占10%.为了了解各组中不同年龄层次的职工对本次活动的满意程度,现用分层抽样的方法从参加活动的全体职工中抽取一个容量为200的样本.试确定
(1)游泳组中青年人、中年人、老年人分别所占的比例.
(2)游泳组中青年人、中年人、老年人分别应抽取的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

为了解某市民众对政府出台楼市限购令的情况,在该市随机抽取了50名市民进行调查,他们月收入(单位:百元)的频数分布及对楼市限购令赞成的人数如下表:

月收入
[15,25)
[25,35)
[35,45)
[45,55)
[55,65)
[65,75]
频数
5
10
15
10
5
5
赞成人数
4
8
12
5
2
1
将月收入不低于55的人群称为“高收入族”,月收入低于55的人群称为“非高收入族”.
(1)根据已知条件完成下面的2×2列联表,问能否在犯错误的概率不超过0.01的前提下认为非高收入族赞成楼市限购令?
 
非高收入族
高收入族
合计
赞成
 
 
 
不赞成
 
 
 
合计
 
 
 
(2)现从月收入在[15,25)的人群中随机抽取两人,求所抽取的两人都赞成楼市限购令的概率.
附:K2
P(K2k0)
0.05
0.025
0.010
0.005
k0
3.841
5.024
6.635
7.879

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在某次测验中,有6位同学的平均成绩为75分.用表示编号为)的同学所得成绩,且前5位同学的成绩如下:70,76,72,70,72.
(1)求第6位同学的成绩,及这6位同学成绩的标准差
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

近年来,我国许多地方出现雾霾天气,影响了人们的出行、工作与健康.其形成与 有关. 是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物. 日均值越小,空气质量越好.为加强生态文明建设,我国国家环保部于2012年2月29日,发布了《环境空气质量标准》见下表:

日均值k(微克)
空气质量等级

一级

二级

超标

某环保部门为了了解甲、乙两市的空气质量状况,在某月中分别随机抽取了甲、乙两市6天的日均值作为样本,样本数据茎叶图如右图所示(十位为茎,个位为叶).
(1)求甲、乙两市日均值的样本平均数,据此判断该月中哪个市的空气质量较好;
(2)若从甲市这6天的样本数据中随机抽取两天的数据,求恰有一天空气质量等级为一级的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

空气质量已成为城市居住环境的一项重要指标,空气质量的好坏由空气质量指数确定。空气质量指数越高,代表空气污染越严重:

空气质量指数
0~35
35~75
75~115
115~150
150~250
≥250
空气质量类别


轻度污染
中度污染
重度污染
严重污染
经过对某市空气质量指数进行一个月(30天)监测,获得数据后得到条形图统计图如图:

(1)估计某市一个月内空气受到污染的概率(规定:空气质量指数大于或等于75,空气受到污染);
(2)在空气质量类别为“良”、“轻度污染”、“中度污染”的监测数据中用分层抽样方法抽取一个容量为6的样本,若在这6数据中任取2个数据,求这2个数据所对应的空气质量类别不都是轻度污染的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某校从参加市联考的甲、乙两班数学成绩110分以上的同学中各随机抽取8人,将这l6人的数学成绩编成茎叶图,如图所示.

(I)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为l22分,试推算这个污损的数据是多少?
(Ⅱ)现要从成绩在130分以上的5位同学中选2位作数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.

查看答案和解析>>

同步练习册答案