精英家教网 > 高中数学 > 题目详情
14.在锐角△ABC中,内角∠A、∠B、∠C的对边分别为a、b、c,已知a=$\sqrt{2}$bsinA.
(1)求∠B的大小;
(2)若AO是边BC上的中线,AO=BC=2,求b的值.

分析 (1)由a=$\sqrt{2}$bsinA,利用正弦定理可得:sinA=$\sqrt{2}$sinBsinA,化简解出即可.
(2)在△ABO中,由余弦定理可得c2-$\sqrt{2}$c-3=0,可解得c,在△ABC中,由余弦定理即可得解.

解答 解:(1)∵a=$\sqrt{2}$bsinA,
∴由正弦定理可得:sinA=$\sqrt{2}$sinBsinA
∵sinA≠0,
∴sinB=$\frac{\sqrt{2}}{2}$,
∴锐角B=$\frac{π}{4}$.
(2)∵在△ABO中,由余弦定理:AO2=AB2+BO2-2•AB•BO•sinB,可得:4=c2+12-2×$c×1×\frac{\sqrt{2}}{2}$,
∴c2-$\sqrt{2}$c-3=0,c>0,可解得:c=$\frac{\sqrt{2}+\sqrt{14}}{2}$,
∴在△ABC中,由b2=a2+c2-2accosB,可得:b=$\sqrt{4+4+\sqrt{7}-2-\sqrt{7}}$=$\sqrt{6}$.

点评 本题主要考查了正弦定理、余弦定理的应用,考查了正弦函数的图象和性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数$f(x)=1-\frac{2}{{{2^x}+1}}$.
(1)求证f(x)是奇函数;
(2)试判断f(x)的单调性并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.圆C1:(x+2)2+(y-2)2=1与圆C2:(x-2)2+(y-5)2=r2相切,则r为(  )
A.4B.6C.4或6D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.求方程$\left\{\begin{array}{l}{x=a•co{t}^{3}t}\\{y=a•si{n}^{3}t}\end{array}\right.$,(0≤t≤2π)确定的二阶导数$\frac{{d}^{2}y}{d{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知A、B、C、D四点在半径为$\frac{5\sqrt{2}}{2}$的球面上,且AC=BD=5,AD=BC=$\sqrt{41}$,AB=CD,则三棱锥D-ABC的体积是20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=2sin(ωx+φ)的部分图象如图所示,则下列叙述中不正确的是(  )
A.x=-$\frac{π}{2}$是函数f(x)的一条对称轴
B.φ的所有取值中,绝对值最小的是$\frac{5π}{4}$
C.($\frac{π}{2}$,0)是函数f(x)的一个对称中心
D.若f(x1)-f(x2)=4,则|x1-x2|的最小值为$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.从一小组中选出正、副组长各一人,与从这个小组中选出4名学生代表的选法种数之比为2:13,则这个小组的人数是(  )
A.10B.13C.15D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(1-2x)=$\sqrt{1-{5}^{x}}$,则f(1)等于(  )
A.0B.1C.$\frac{1}{2}$D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于α的方程$\frac{\sqrt{2}}{2}$sin($\frac{π}{4}$+α)+$\frac{\sqrt{6}}{2}$sin($\frac{π}{4}$-α)=2m-3有解,则m的取值范围$\frac{3-\sqrt{2}}{2}$≤m≤$\frac{3+\sqrt{2}}{2}$.

查看答案和解析>>

同步练习册答案