已知函数
.
(Ⅰ)求
的最小正周期;
(Ⅱ)若将
的图象向右平移
个单位,得到函数
的图象,求函数
在区间
上的最大值和最小值.
(I)先利用三角恒等变换公式把f(x)转化为
.
然后再求其周期.
(II)先根据平移规律求出
,
然后再求出特定区间
上的最值.
解:(Ⅰ)
…………………2分
.……………………………4分
所以
的最小正周期为
.…………………………6分
(Ⅱ)
将
的图象向右平移
个单位,得到函数
的图象,
.…………………8分
时,
, …………………………9分
当
,即
时,
,
取得最大值2. …………10分
当
,即
时,
,
取得最小值
.………12分
练习册系列答案
相关习题
科目:高中数学
来源:不详
题型:解答题
已知向量
,其中a、b、c分别是
的三内角A、B、C的对边长.
(1)求
的值;
(2)求
的最大值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知向量
,
,函数
,
(1)求
的最小正周期;
(2)当
时,求
的单调递增区间;
(3)说明
的图像可以由
的图像经过怎样的变换而得到。
查看答案和解析>>
科目:高中数学
来源:不详
题型:单选题
已知函数
的一部分图象如图,那么
的解析式以及
的值分别是( )
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
(本小题满分14分)已知向量
,函数
·
,
且最小正周期为
.
(1)求
的值;
(2)设
,求
的值.
(3)若
,求函数f(x)的值域;
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
,设
(Ⅰ)求函数
的周期及单调增区间。
(Ⅱ)设
的内角
的对边分别为
,已知
,求边
的值.
查看答案和解析>>
科目:高中数学
来源:不详
题型:解答题
已知
的角
所对的边分别是
,设向量
(1)若
求角B的大小;
(2)若
边长c=2,角
求
的面积.
查看答案和解析>>