精英家教网 > 高中数学 > 题目详情
如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,分别为AC、AD上的动点.
(1)若,求证:平面BEF⊥平面ABC;
(2)若,求平面BEF与平面BCD所成的锐二面角的大小.

【答案】分析:(1)由已知中AB⊥平面BCD,∠BCD=90°,由线面垂直的判定定理可得CD⊥平面ABC,由,根据平行线分线段成比例定理,可得EF∥CD,由线面垂直的第二判定定理可得EF⊥平面ABC,再由面面垂直的判定定理,可得平面BEF⊥平面ABC;
(2)方法一(向量法)建立空间直角坐标系C-xyz,根据分别为AC、AD上的动点,,分别求出平面BEF与平面BCD的法向量,代入向量夹角公式,即可求出平面BEF与平面BCD所成的锐二面角的大小.
方法二(几何法)延长EF,交CD的延长线于G,连接BG,过E作EH⊥BC于H,可得EH⊥平面BCD,过H作HK⊥BG于K,连接EK,则∠EKH即为所求二面角的平面角,解Rt△BCD即可求出平面BEF与平面BCD所成的锐二面角的大小.
解答:证明:(1)∵AB⊥平面BCD,
∴AB⊥CD.
又∵CD⊥BC,
∴CD⊥平面ABC.

∴EF∥CD.
∴EF⊥平面ABC,
∵EF?平面BEF,
∴平面BEF⊥平面ABC.
解:(2)解法一(向量法):
如图建立空间直角坐标系C-xyz






平面BEF,

平面BCD,则可取(0,0,1),

所以,平面BEF与平面BCD所成的锐二面角为45°.
方法二(几何法):
延长EF,交CD的延长线于G,连接BG,
过E作EH⊥BC于H,则EH⊥平面BCD,
过H作HK⊥BG于K,连接EK,则EK⊥BG,
∴∠EKH即为所求二面角的平面角.


在Rt△BCD中,可以解得
∴在Rt△BCD中,∠EKH=45°,即平面BEF与平面BCD所成的锐二面角为45°.
点评:本题考查的知识点是二面角的平面角及求法,平面与平面垂直的判定,其中(1)的关键是将条件,根据平行线分线段成比例定理,转化为EF∥CD,(2)中方法一的关键是将二面角问题转化为向量夹角问题,方法二的关键是确定∠EKH即为所求二面角的平面角.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=2,CD=
3
AB=
3
,E、F
分别为AC、AD上的动点.
(1)若
AE
EC
=
AF
FD
,求证:平面BEF⊥平面ABC;
(2)若
AE
EC
=1
AF
FD
=2
,求平面BEF与平面BCD所成的锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知△BCD中,∠BCD=90°,AB⊥平面BCD,BC=CD=1,AB=
3
,E、F
分别为AC、AD的中点.
(1)求证:平面BEF⊥平面ABC;
(2)求直线AD与平面BEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且
AE
AC
=
AF
AD
(0<λ<1).若平面BEF⊥平面ACD,则λ的值为
6
7
6
7

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安市安福中学高二(上)期中数学试卷(理科)(解析版) 题型:填空题

如图,已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且(0<λ<1).若平面BEF⊥平面ACD,则λ的值为   

查看答案和解析>>

科目:高中数学 来源:2012-2013学年江西省吉安市安福中学高二(上)期中数学试卷(理科)(解析版) 题型:填空题

如图,已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E、F分别是AC、AD上的动点,且(0<λ<1).若平面BEF⊥平面ACD,则λ的值为   

查看答案和解析>>

同步练习册答案