精英家教网 > 高中数学 > 题目详情
已知向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
)

(Ⅰ)若
m
n
=1
,求cos(
3
-x)的值;
(Ⅱ)记f(x)=
m
n
,在△ABC中,角A,B,C的对边分别是a,b,c,且满足(2a-c)cosB=bcosC,求函数f(A)的取值范围.
分析:(1)利用向量的数量积公式列出方程求出
sin(
x
2
+
π
6
)
,利用二倍角的余弦公式求出要求的式子的值.
(2)利用三角形中的正弦定理将等式中的边转化为角的正弦值,利用三角形的内角和为180°化简等式,求出角B,求出角A的范围,求出三角函数值的范围.
解答:解:(1)
m
n
=
3
2
sin
x
2
+
1+cos
x
2
2
=sin(
x
2
+
π
6
)+
1
2
=1

sin(
x
2
+
π
6
)=
1
2

cos(
3
-x)=-cos(x+
π
3
)=-[1-2sin2(
x
2
+
π
6
)]=-
1
2
(6分)

(2)∵(2a-c)cosB=bcosC
∴2sinAcosB=sinCcosB+sinBcosC=sin(B+C)=sinA
∵sinA>0
∴cosB=
1
2

∵B∈(0,π),
B=
π
3

A∈(0,
3
)

f(x)=sin(
x
2
+
π
6
)+
1
2

f(A)=sin(
A
2
+
π
6
)+
1
2

A
2
+
π
6
∈(
π
6
π
2
)

sin(
A
2
+
π
6
)∈(
1
2
,1)

f(A)∈(1,
3
2
)
(12分)
点评:本题考查向量的数量积公式、考查三角形的正弦定理、考查三角形的内角和为180°、考查利用三角函数的单调性求三角函数值的范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx,cosx),
n
=(cosx,cosx),
p
=(2
3
,1)

(1)若
m
n
,求sinx•cosx的值;
(2)设△ABC的三边a、b、c满足b2=ac,且边b所对的角B的取值集合为M,当x∈M时,求函数f(x)=
m
n
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx-cosx,  1)
n
=(cosx,  
1
2
)
,若f(x)=
m
n

(1) 求函数f(x)的最小正周期;
(2) 已知△ABC的三内角A、B、C的对边分别为a、b、c,且c=3, f(
C
2
+
π
12
)=
3
2
(C为锐角),2sinA=sinB,求C、a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(
1
2
f(x),cosx),
m
n

(I)求f(x)的单调增区间及在[-
π
6
π
4
]
内的值域;
(II)已知A为△ABC的内角,若f(
A
2
)=1+
3
,a=1,b=
2
,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x))
,且
m
n

(1)求f(x)的单调区间;
(2)当x∈[0, 
π
2
]
时,函数g(x)=a[f(x)-
1
2
]+b
的最大值为3,最小值为0,试求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)已知向量
m
=(
3
sinx+cosx,1),
n
=(cosx,-f(x)),
m
n

(1)求f(x)的单调区间;
(2)已知A为△ABC的内角,若f(
A
2
)=
1
2
+
3
2
,a=1,b=
2
,求△ABC的面积.

查看答案和解析>>

同步练习册答案