精英家教网 > 高中数学 > 题目详情
19.已知集合M={x|x2+px+2=0},N={x|x2-x-q=0}且M∩N={2},则p,q的值为(  )
A.p=-3,q=-2B.p=-3,q=2C.p=3,q=-2D.p=3,q=2

分析 根据题意把x=2代入M与N中两方程中求出p与q的值即可.

解答 解:∵集合M={x|x2+px+2=0},N={x|x2-x-q=0},且M∩N={2},
∴把x=2代入M中方程得:4+2p+2=0,即p=-3;
把x=2代入N中方程得:4-2-q=0,即q=2,
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx,g(x)=$\frac{x-1}{kx}$,其中k>0.
(1)设k=1,x>0,证明f(x)≥g(x).
(2)若函数q(x)=f(x)-g(x)-$\frac{x}{k}$在区间(1,2)上不单调,求k的取值范围;
(3)设函数p(x)=$\left\{\begin{array}{l}{f(x),}&{x>{e}^{2}}\\{-g(x)+a,}&{0<x<{e}^{2}}\end{array}$,若对任意给定的实数x1(x1∈(0,e2)∪(e2,+∞)),存在唯一的实数x2(x1≠x2,x2∈(0,e2)∪(e2,+∞)),使得p(x1)=p(x2)成立,求k与a满足的关系式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知全集U=R,集合A={x|2<x≤3},集合B={x|2≤x≤4},则(∁UA)∩B等于(  )
A.{x|3≤x≤4}B.{x|3<x≤4}C.{x|x=2或3<x≤4}D.{x|3<x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:?x∈R,使得x2-2x+m<0,命题q:方程$\frac{{x}^{2}}{m+1}$+$\frac{{y}^{2}}{2-m}$=1表示椭圆.
(Ⅰ)写出命题p的否定形式;
(Ⅱ)若命题p∨q为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(1+x)6(1-x)6展开式中x6的系数为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x∈Z|x>-1},则(  )
A.∅∉AB.2∈AC.$\sqrt{2}$∈AD.{$\sqrt{2}$}⊆A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设f(x)是定义在R上的函数,其函数为f′(x),若f(x)+f′(x)<1,f(0)=2015,则不等式exf(x)-ex>2014(其中e为自然对数的底数)的解集为(  )
A.(2014,+∞)B.(-∞,0)∪(2014,+∞)C.(-∞,0)∪(0,+∞)D.(-∞,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题“若a>-2,则a>-3”及其逆命题、否命题、逆否命题4个命题中,真命题的个数是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知等差数列{an}满足a3•a7=-12,a4+a6=-4.
(1)求数列{an}的通项公式.
(2)当数列{an}的公差小于零时,求n取何值时,前n项和Sn有最大值,并求出它的最大值.

查看答案和解析>>

同步练习册答案