精英家教网 > 高中数学 > 题目详情
下列函数为偶函数,且在上单调递增的函数是(  )
A.B.C.D.
C

试题分析:A. 是偶函数,但在上单调递减的;
B.  是奇函数;
C. 根据指数函数的图像和函数图像的变换画出函数的图像,由图像可知满足题意;
D. 的定义域为,所以是非奇非偶函数。
因此只有C满足题意。
点评:熟练掌握基本初等函数的图像及性质是解决本题的前提条件。判断函数的奇偶性有两步:一求函数的定义域,看定义域是否关于原点对称;二判断的关系。若定义域不关于原点对称,则函数一定是非奇非偶函数。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)己知函数
(1)求的单调区间;
(2)若时,恒成立,求的取值范围;
(3)若设函数,若的图象与的图象在区间上有两个交点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对函数,设点是图象上的两端点.为坐标原点,且点满足.点在函数的图象上,且为实数),则称的最大值为函数的“高度”,则函数在区间上的“高度”为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于函数,在使成立的所有常数M中,我们把M的最大值称为函数 的“下确界”,则函数上的“下确界”为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
一片森林原来面积为,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.
(Ⅰ)求每年砍伐面积的百分比;
(Ⅱ)到今年为止,该森林已砍伐了多少年?
(Ⅲ)今后最多还能砍伐多少年?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数,若成立,则的取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

四个函数,,中,在区间上为减函数的是_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题9分)已知函数
(Ⅰ)若上的最小值是,试解不等式
(Ⅱ)若上单调递增,试求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
已知定义域为的函数是奇函数。
(Ⅰ)求的值;
(Ⅱ)解不等式

查看答案和解析>>

同步练习册答案