精英家教网 > 高中数学 > 题目详情
16.在△ABC中,$AC=\sqrt{7}$,B=60°,BC边上的高$h=\frac{{3\sqrt{3}}}{2}$,则BC=1或2.

分析 先求出AB,再在△ABC中,由余弦定理可得BC2-3BC+2=0,即可得出结论.

解答 解:∵B=60°,BC边上的高$h=\frac{{3\sqrt{3}}}{2}$,
∴AB=3
在△ABC中,由余弦定理可得,
AC2=AB2+BC2-2AB•BCcosB,
把已知AC=$\sqrt{7}$,AB=3,B=60°代入可得,
7=32+BC2-2×3×BC×$\frac{1}{2}$,
整理可得,BC2-3BC+2=0,
∴BC=1或2.
故答案为1或2.

点评 本题主要考查了余弦定理在解三角形中的应用,解答本题的关键是求出AB,属于基础试题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.函数f(x)=2sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则f(0)的值是-$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若a∈R,则“a2>a”是“a>1”的(  )条件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线l经过点P(-2,1),且点A(-1,-2)到l的距离为1,则直线l的方程为x=-2或4x+3y+5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.现代城市大多是棋盘式布局(如上海道路几乎都是东西和南北走向).在这样的城市中,我们说的两点间的距离往往不是指两点间的直线距离(位移),而是实际路程(如图).在直角坐标平面内,我们定义A(x1,y1)、B(x2,y2)两点间的“直角距离”为:D(AB)=|x1-x2|+|y1-y2|.
(1)在平面直角坐标系中,写出所有满足到原点的“直角距离”
为2的“格点”的坐标;(格点指横、纵坐标均为整数的点)
(2)定义:“圆”是所有到定点“直角距离”为定值的点组成的图形,点A(1,3),B(1,1),C(3,3),求经过这三个点确定的一个“圆”的方程,并画出大致图象;
(3)设P(x,y),集合B表示的是所有满足D(PO)≤1的点P所组成的集合,
点集A={(x,y)|-1≤x≤1,-1≤y≤1},
求集合Q={(x,y)|x=x1+x2,y=y1+y2,(x1,y1)∈A,(x2,y2)∈B}所表示的区域的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等差数列{an}中,a2+a7=-23,a3+a8=-29.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{2n-an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=(x+1)(x-a)是偶函数,则f(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某种产品的广告费用支出X与销售额之间有如下的对应数据:
x24568
y3040605070
(1)画出散点图;
(2)求回归直线方程;
(3)据此估计广告费用为10销售收入y的值.
参考公式:最小二乘法得$\left\{\begin{array}{l}{\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$其中:$\widehat{b}$是回归方程的斜率,$\widehat{a}$是截距.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.正方体中相邻两个面上的对角线所成的角的大小为(  )
A.60°B.45°C.90°D.30°

查看答案和解析>>

同步练习册答案