精英家教网 > 高中数学 > 题目详情

将边长为1的正方形 ABCD沿对角线BD折起,使得点A到点的位置,且,则折起后二面角的大小  w.w.^w.k.&s.5*u.c.#om                     (     )

A.B.C.D.

C

解析考点:与二面角有关的立体几何综合题.
分析:由已知中将边长为1的正方形ABCD沿对角线BD折起,使得点A到点A′的位置,且A′C=1,我们易得△A’DC为正三角形,则过△A’DC底边上的路线A’E⊥DC,我们连接E与BD的中点F,则易得∠A’EF即为二面角A′-DC-B的平面角,解三角形A’EF,即可求解.

解:取DC的中点E,BD的中点F
连接EF,A’F
则由于△A’DC为正三角形,易得:
A’E⊥DC,EF⊥DC
则∠A’EF即为二面角A′-DC-B的平面角
又∵EF=BC=
A’E=,A’F=
则tan∠A’EF=
∠A’EF=arctan
故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线BD折起,使得点A到点A′的位置,且A′C=1,则折起后二面角A′-DC-B的大小(  )
A、arctan
2
2
B、
π
4
C、arctan
2
D、
π
3

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线AC折起,使平面ACD⊥平面ABC,则折起后B,D两点的距离为
 
;三棱锥D-ABC的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱锥D-ABC中,给出下列三个命题:
①面DBC是等边三角形;  ②AC⊥BD;  ③三棱锥D-ABC的体积是
2
6

其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线BD折起成直二面角A-BD-C,则在这个直二面角A-BD-C中点A到直线BC的距离是
3
2
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为1的正方形ABCD沿对角线BD折成直二面角,若点P满足
BP
=
1
2
BA
-
1
2
BC
+
BD
,则|
BP
|2
的值为
 

查看答案和解析>>

同步练习册答案