精英家教网 > 高中数学 > 题目详情
设常数a>0,(ax-
1
x
)5
展开式中x3的系数为-
5
81
,则a=
 
lim
n→∞
(a+a2+…+an)
=
 
分析:(1)利用二项展开式通项公式Tr+1=c5r(ax)5-r(-
1
x
r,整理后,令x的次数等于3,从而解得a,
(2)再求等比数列的前n项和,sn=
a×(1-an)
1-a
,且
lim
n→∞
an=0(∵a<1),从而得解.
方法2:由a=
1
3
<1,可知数列a,a2…an是递降等比数列,则
lim
n→∞
(a+a2+…+an)表示无穷递降等比数列的各项和,利用无穷递降等比数列的各项和公式,可得解.
解答:解:(1)由Tr+1=c5r(ax)5-r(-
1
x
r,整理得Tr+1=(-1)rc5ra5-rx5-2r
r=1时,即(-1)c51a4=-
5
81
,∴a=
1
3
.故答案为
1
3


(2)方法1:令sn=a+a2+…+an=
a×(1-an)
1-a

lim
n→∞
(a+a2+…+an)=
lim
n→∞
a×(1-an)
1-a
=
a
1-a
(∵a<1时,
lim
n→∞
an=0)
=
1
3
1-
1
3
=
1
2

故答案为
1
2

方法2:由a=
1
3
,可知数列a,a2…an是递降等比数列,
lim
n→∞
(a+a2+…+an)表示无穷递降等比数列的各项和,
由无穷递降等比数列的各项和公式(
lim
n→∞
sn=
a1
1-q

可知
lim
n→∞
(a+a2+…+an)=
a
1-a
1
3
1-
1
3
=
1
2

故答案为
1
2
点评:本题(1)主要考查二项式展开式特定项的系数的求法,需要熟记展开式的通项公式,即Tr+1=cnran-rbr.是高考的常见题型.
(2)主要考查等比数列求和公式及极限的运算,需要注意:当a的绝对值小于1时,
lim
n→∞
an=0,方法2:要记住无穷递降等比数列各项和公式
lim
n→∞
sn=
a1
1-q
.在选择填空中可以加快速度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]
上是减函数,在[
a
,+∞)
上是增函数.
(1)如果函数y=x+
2b
x
(x>0)
在(0,4]上是减函数,在[4,+∞)上是增函数,求b的值.
(2)设常数c∈[1,4],求函数f(x)=x+
c
x
(1≤x≤2)
的最大值和最小值;
(3)当n是正整数时,研究函数g(x)=xn+
c
xn
(c>0)
的单调性,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x+
a
x
旦(a>0)有如下的性质:在区间(0,
a
]上单调递减,在[
a
,+∞)上单调递增.
(1)如果函数f(x)=x+
2b
x
在(0,4]上单调递减,在[4,+∞)上单调递增,求常数b的值.
(2)设常数a∈[l,4],求函数y=x+
a
x
在x∈[l,2]的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
a
x
有如下性质:如果常数a>0,那么该函数在(0,
a
]上是减函数,在[
a
,+∞)上是增函数.
(1)如果函数y=x+
2b
x
(x>0)在(0,4]上是减函数,在[4,+∞)是增函数,求b的值;
(2)证明:函数f(x)=x+
a
x
(常数a>0)在(0,
a
]上是减函数;
(3)设常数c∈(1,9),求函数f(x)=x+
c
x
在x∈[1,3]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源:朝阳区二模 题型:填空题

设常数a>0,(ax-
1
x
)5
展开式中x3的系数为-
5
81
,则a=______,
lim
n→∞
(a+a2+…+an)
=______.

查看答案和解析>>

同步练习册答案