精英家教网 > 高中数学 > 题目详情
15.若指数函数的图象经过点($\frac{2}{3}$,4),求该函数的解析式及f(-$\frac{1}{2}$)的值.

分析 设出指数函数的解析式,利用函数图象经过点的坐标求出函数解析式,再计算f(-$\frac{1}{2}$)的值.

解答 解:设指数函数y=f(x)=ax(a>0且a≠1),
且函数的图象经过点($\frac{2}{3}$,4),
∴${a}^{\frac{2}{3}}$=4,
解得a=8;
∴该函数的解析式为y=f(x)=8x
∴f(-$\frac{1}{2}$)=${8}^{-\frac{1}{2}}$=$\frac{1}{\sqrt{8}}$=$\frac{\sqrt{2}}{4}$.

点评 本题考查了指数函数的图象与性质的应用问题,也考查了利用待定系数法求函数解析式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.P(x1,y1)是直线l:f(x,y)=0上一点,Q(x2,y2)是l外一点,则方程f(x,y)=f(x1,y1)+f(x2,y2)表示的直线(  )
A.与l重合B.与l相交于P点C.过Q点且与l平行D.过Q点且与l相交

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.“a=1”是“函数f(x)=$\frac{1}{x+1}$+$\frac{1}{x-a}$为奇函数”的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$).
(1)求f(x)的最小正周期;
(2)求f(x)的单调区间;
(3)求f(x)的最大值、最小值,及其取得最值时自变量的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等差数列{an}中,已知a5=6,a8=15,求首项a1与公差d.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知曲线y=x3,求
(1)过点B(1,1)且与曲线相切的直线方程;
(2)过点C(1,0)且与曲线相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x${\;}^{\frac{1}{2}}$-x${\;}^{-\frac{1}{2}}$=4,求$\frac{1}{{x}^{-1}+{x}^{1}+3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0,直线a2x+y+2=0与直线bx-(a2+1)y-1=0互相垂直,则ab的最小值为(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.集合A={x|3≤x<7},B={x|2<x<10},求A∪B,A∩B,(∁RA)∩B.

查看答案和解析>>

同步练习册答案