精英家教网 > 高中数学 > 题目详情

用反证法证明命题:“若,那么中至少有一个不小于”时,反设正确的是

A. 假设都不小于 

B. 假设都小于

C. 假设至多有两个小于 

D. 假设至多有一个小于

 

【答案】

B

【解析】解:因为至少有一个的反设,就是一个也没有,因此对于命题“若,那么中至少有一个不小于””即为假设都小于,选B

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、用反证法证明命题“a•b(a,b∈Z*)是偶数,那么a,b中至少有一个是偶数.”那么反设的内容是
假设a,b都是奇数(a,b都不是偶数)

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题:“a,b,c,d∈R,a+b=1,c+d=1,且ac+bd>1,则a,b,c,d中至少有一个负数”时的假设为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“如果AB∥CD,AB∥EF,那么CD∥EF”,证明的第一个步骤是
假设CD和EF不平行
假设CD和EF不平行

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“若a、b∈N,ab能被2整除,则a,b中至少有一个能被2整除”,那么反设的内容是
a、b都不能被2整除
a、b都不能被2整除

查看答案和解析>>

科目:高中数学 来源: 题型:

用反证法证明命题“a、b、c、d中至少有一个是负数”时,假设正确的是(  )

查看答案和解析>>

同步练习册答案