精英家教网 > 高中数学 > 题目详情
13.圆(x+m)2+(y-2m)2=4m+4的面积为16π,则圆心坐标为(-3,6).

分析 由已知先求出圆的半径r=$\sqrt{4m+4}$,再由圆的面积求出m,由此能求出结果.

解答 解:∵圆(x+m)2+(y-2m)2=4m+4的面积为16π,
∴$π(\sqrt{4m+4})^{2}=16π$,
解得m=3,
∴圆的方程为(x+3)2+(y-6)2=16,
∴圆心坐标为(-3,6).
故答案为:(-3,6).

点评 本题考查圆的圆心坐标的求法,是基础题,解题时要认真审题,注意圆的简单性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.幂函数y=f(x)的图象经过点(9,3),则此幂函数的解析式为f(x)=$\sqrt{x}$,x≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.定义在[1,+∞)上的函数f(x)满足:(1)f(2x)=2f(x);(2)当2≤x≤4时,f(x)=1-|x-3|.则集合A={x|f(x)=f(61)}中的最小元素是(  )
A.13B.11C.9D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知在三棱锥A-BCD中,AB=CD,且点M,N分别是BC,AD的中点.
(1)若直线AB与CD所成的角为60°,则直线AB和MN所成的角为60°.
(2)若直线AB⊥CD,则直线AB与MN所成的角为45.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=-$\frac{1}{2}$ax2+(1+a)x-lnx(a∈R).
(Ⅰ)当a>0时,求函数f(x)的单调递减区间;
(Ⅱ)当a=0时,设函数g(x)=xf(x).若存在区间[m,n]⊆[$\frac{1}{2}$,+∞),使得函数g(x)在[m,n]上的值域为[k(m+2)-2,k(n+2)-2],求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.m取何值时,方程x2-(m+1)x+1=0有实数解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的反函数:
①y=$\frac{3}{x+1}$ x∈R x≠-1,
②y=$\frac{1}{x-2}$ x∈R x≠2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知两个单位向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|λ$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$|$\overrightarrow{a}$-λ$\overrightarrow{b}$|(λ>0),求当$\overrightarrow{a}$•$\overrightarrow{b}$最小时$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.(参考:1+λ2≥2λ,当且仅当λ=1时等号成立.)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={1,2,3},B={x|x=a+b,a∈A,b∈A},则B中所含元素的个数为(  )
A.9B.7C.5D.3

查看答案和解析>>

同步练习册答案