精英家教网 > 高中数学 > 题目详情

设函数f(x)=x2+bx+c,其中b、c是某范围内的随机数,分别在下列条件下,求事件A“f(1)≤5且f(0)≤3”发生的概率.
(1)若随机数b,c∈{1,2,3,4};
(2)已知随机函数Rand()产生的随机数的范围为{x|0≤x≤1},b,c是算法语句b=4*Rand()和c=4*Rand()的执行结果.(注:符号“*”表示“乘号”)

(1)(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

甲乙两个同学进行定点投篮游戏,已知他们每一次投篮投中的概率均为,且各次投篮的结果互不影响.甲同学决定投5次,乙同学决定投中1次就停止,否则就继续投下去,但投篮次数不超过5次.
(1)求甲同学至少有4次投中的概率;
(2)求乙同学投篮次数的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某地位于甲、乙两条河流的交汇处,根据统计资料预测,今年汛期甲河流发生洪水的概率为0.25,乙河流发生洪水的概率为0.18(假设两河流发生洪水与否互不影响).现有一台大型设备正在该地工作,为了保护设备,施工部门提出以下三种方案:
方案1:运走设备,此时需花费4000元;
方案2:建一保护围墙,需花费1000元,但围墙只能抵御一个河流发生的洪水,当两河流同时发生洪水时,设备仍将受损,损失约56000元;
方案3:不采取措施,此时,当两河流都发生洪水时损失达60000元,只有一条河流发生洪水时,损失为10000元.
(1)试求方案3中损失费X(随机变量)的分布列;
(2)试比较哪一种方案好.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设随机变量X的分布列为P(X=i)=,(i=1,2,3,4).
(1)求P(X<3);
(2)求P
(3)求函数F(x)=P(X<x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知直线l1:x-2y-1=0,直线l2:ax-by+1=0,其中a,b∈{1,2,3,4,5,6}.
(1) 求直线l1与l2相交的概率;
(2) 求直线l1与l2的交点位于第一象限的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

生活富裕了,农民也健身啦,一天,一农民夫妇带着小孩共3人在新农村健身房玩传球游戏,持球者将球等可能的传给其他2人,若球首先从父亲传出,经过4次传球.
(1)求球恰好回到父亲手中的概率;
(2)求小孩获球(获得他人传来的球)的次数为2次的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

判断下列命题正确与否.
(1)先后掷两枚质地均匀的硬币,等可能出现“两个正面”“两个反面”“一正一反”三种结果;
(2)某袋中装有大小均匀的三个红球、两个黑球、一个白球,任取一球,那么每种颜色的球被摸到的可能性相同;
(3)从-4,-3,-2,-1,0,1,2中任取一数,取到的数小于0与不小于0的可能性相同;
(4)分别从3名男同学、4名女同学中各选一名代表,男、女同学当选的可能性相同.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函数图象上的九个点,在这九个点中随机取出两个点P1(x1,y1),P2(x2,y2),
(1)求P1,P2两点在双曲线xy=6上的概率;
(2)求P1,P2两点不在同一双曲线xy=k(k≠0)上的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知ABC三个箱子中各装有两个完全相同的球,每个箱子里的球,有一个球标着号码1,另一个球标着号码2.现从ABC三个箱子中各摸出一个球.
(1)若用数组(xyz)中的xyz分别表示从ABC三个箱子中摸出的球的号码,请写出数组(xyz)的所有情形,并回答一共有多少种;
(2)如果请您猜测摸出的这三个球的号码之和,猜中有奖.那么猜什么数获奖的可能性最大?请说明理由.

查看答案和解析>>

同步练习册答案