精英家教网 > 高中数学 > 题目详情
17.函数y=$\frac{1}{3}{x^3}-{x^2}$-3x+9的零点个数为(  )
A.0B.1C.2D.3

分析 先利用导数判断函数的单调性,然后说明f(x)存在零点,由此即可得到答案.

解答 解:f′(x)=x2-2x-3=(x+1)(x-3),令(x+1)(x-3)=0,可得x=-1,x=3,
函数有两个极值点,并且f(-1)=$-\frac{1}{3}-1+3+9$>0,f(3)=9-9-9+9=0,
x∈(-∞,-1),x∈(3,+∞),f′(x)>0,x∈(-1,3),f′(x)<0,
x=-1函数取得极大值,x=3时,函数取得极小值,
所以f(x)的零点个数为2.
故选:C.

点评 本题的考点是函数零点,用导函数判断函数单调性,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C的对边分别为a,b,c,已知2ccosA+$\sqrt{3}$a=2b.
(Ⅰ)求角C的值;
(Ⅱ)若a+b=6,求△ABC的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在${(1-x+\frac{1}{{{x^{2017}}}})^{10}}$的展开式中,含x2项的系数为45.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设i为虚数单位,复数$\frac{a+2i}{1+i}$为纯虚数,则实数a的值为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知四边形ABCD和ABEG均为平行四边形,点E在平面ABCD内的射影恰好为点A,以BD为直径的圆经过点A,C,AG的中点为F,CD的中点为P,且AD=AB=AE=2.
(1)求证:平面EFP⊥平面BCE;
(2)求几何体ADG-BCE,P-EF-B的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别为三个内角A,B,C的对边,若a=2,b=1,B=29°,则此三角形解的情况是(  )
A.无解B.有一解C.有两解D.有无数解

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在平面直角坐标系xOy中,已知圆M:(x+1)2+y2=$\frac{49}{4}$的圆心为M,圆N:(x-1)2+y2=$\frac{1}{4}$的圆心为N,一动圆C与圆M内切,与圆N外切.
(Ⅰ)求动圆C的轨迹方程;
(Ⅱ)过点(1,0)的直线l与椭圆C交于A,B两点,若$\overrightarrow{OA}•\overrightarrow{OB}$=-2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,已知圆M:(x+1)2+y2=$\frac{49}{4}$的圆心为M,圆N:(x-1)2+y2=$\frac{1}{4}$的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)过点(1,0)的直线l与曲线P交于A,B两点,若$\overrightarrow{OA}•\overrightarrow{OB}$=-2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若集合A={x|3x-x2>0},集合B={x|x<1},则A∩(∁UB)等于(  )
A.(-3,1]B.(-∞,1]C.[1,3)D.(3,+∞)

查看答案和解析>>

同步练习册答案