精英家教网 > 高中数学 > 题目详情
已知椭圆的左、右顶点分别为为短轴的端点,△的面积为,离心率是
(Ⅰ)求椭圆的方程;
(Ⅱ)若点是椭圆上异于的任意一点,直线与直线分别交于两点,证明:以为直径的圆与直线相切于点 (为椭圆的右焦点).
(Ⅰ).(Ⅱ)证明:见解析。
(I)由题意可得,再根据,求出a,b的值.
(II) 以为直径的圆与直线相切于点本质是证明:.然后利用坐标表示出来,再根据条件把M、N的坐标求出来,证明即可.
请考生在第(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题记分.答时用2B铅笔在答题卡上把所选题目的题号涂黑.
(Ⅰ)解:由已知
解得.  …………4分故所求椭圆方程为
(Ⅱ)证明:由(Ⅰ)知,设椭圆右焦点.设,则.于是直线方程为,令,得
所以,同理
所以.
所以

所以,点在以为直径的圆上.
的中点为,则

所以

所以.…………12分
因为是以为直径的圆的半径,为圆心,,故以为直径的圆与直线相切于右焦点.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知椭圆的左焦点为F,左右顶点分别为A,C上顶点为B,过F,B,C三点作,其中圆心P的坐标为.(1) 若FC是的直径,求椭圆的离心率;(2)若的圆心在直线上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)在平面直角坐标系中,已知椭圆的离心率为,其焦点在圆上.
⑴求椭圆的方程;
⑵设是椭圆上的三点(异于椭圆顶点),且存在锐角,使
①试求直线的斜率的乘积;
②试求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.椭圆上一点到右准线的距离为,则该点到左焦点的距离为(  )
A. B. C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆(a>b>0)的左右焦点分别为F1,F2,P是椭圆上一点。PF1F2为以F2P为底边的等腰三角形,当60°<PF1F2120°,则该椭圆的离心率的取值范围是    

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)(注意:在试题卷上作答无效)
已知椭圆的左、右焦点分别为,若以为圆心,为半径作圆,过椭圆上一点作此圆的切线,切点为,且的最小值不小于为
(1)求椭圆的离心率的取值范围;
(2)设椭圆的短半轴长为,圆轴的右交点为,过点作斜率为的直线与椭圆相交于两点,若,求直线被圆截得的弦长的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左、右焦点分别为F1和F2 ,以F1、F2为直径的圆经过点M(0,b).(1)求椭圆的方程;(2)设直线l与椭圆相交于A,B两点,且.求证:直线l在y轴上的截距为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,线段AB的两个端点A、B分别在x轴,y轴上滑动,,点M是线段AB上一点,且点M随线段AB的滑动而运动.
(I)求动点M的轨迹E的方程
(II)过定点N的直线交曲线E于C、D两点,交y轴于点P,若的值

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆,顺次连结椭圆的四个顶点,所得四边形的内切圆与长轴的两交点正好是长轴的两个三等分点,则椭圆的离心率等于(    ).
A.B.C.D.

查看答案和解析>>

同步练习册答案