精英家教网 > 高中数学 > 题目详情

已知椭圆数学公式,F1,F2为两焦点,若椭圆上存在P,使得数学公式.则a,b满足的条件为


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
A
分析:首先根据?∠F1PF2是钝角,然后假设P处于(0,b)时有PF1⊥PF2,得出角是钝角时有2c>a,再根据c2=a2-b2即可求出结果.
解答:∵
∴∠F1PF2是钝角,∠F1PF2在P处于(0,b)时最大,
假设P处于(0,b)时有PF1⊥PF2,此时2c=a,则角是钝角时有2c>a
即4c2>2a2,2c2>a2
即2(a2-b2)>a2
∴a2-2b2>0
∴a>b>0
故选A.
点评:本题考查了椭圆的简单性质,解题的关键是根据条件得出∠F1PF2是钝角,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆=1,F1、F2分别为它的焦点,过F1的焦点弦CD与x轴成α角(0<α<π),则△F2CD的周长为(    )

A.10                 B.12

C.20                 D.不能确定

查看答案和解析>>

科目:高中数学 来源:2012-2013学年辽宁沈阳二中等重点中学协作体高三领航高考预测(三)文数学卷(解析版) 题型:选择题

已知椭圆,F1,F2为其左、右焦点,P为椭圆C上任一点,的重心为G,内心I,且有(其中为实数),椭圆C的离心率e=(   )

A.              B.               C.               D.

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省金华市东阳市南马高中高二(上)第二次月考数学试卷(理科)(解析版) 题型:选择题

已知椭圆,F1,F2分别为其左右焦点,椭圆上一点M到F1的距离是2,N是MF1的中点,则|ON|的长是( )
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源:2010-2011学年江苏省南通市海门市高二(上)期末数学试卷(解析版) 题型:填空题

已知椭圆,F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使|PF1|是P到直线l的距离的2倍,则椭圆离心率的取值范围是   

查看答案和解析>>

科目:高中数学 来源:2010-2011学年底江苏省连云港市赣榆高级中学高三(下)摸底数学试卷(解析版) 题型:填空题

已知椭圆,F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使|PF1|是P到直线l的距离的2倍,则椭圆离心率的取值范围是   

查看答案和解析>>

同步练习册答案