精英家教网 > 高中数学 > 题目详情

在数列{an}中,a1=1,数学公式,设bn=a2n-2,Sn=|b1|+|b2|+…+|bn|.
(1)求数列{bn}的通项公式;
(2)若Tn=a1+a2+a3+…+a2n+a2n+1,试比较Sn与Tn的大小.

解:(1)a2=,a2n==+2n-1=,∵bn=a2n-2,
∴b1=a2-2=1.5-2=-0.5,
bn-1=a2n-2-2,即a2n-2=cn-1+2

=
=
所以{bn}是首项为b1=-0.5,公比为q=的等比数列其通项公式为
(2)∵
∴Sn=|b1|+|b2|+…+|bn|
=
=
=1-.∵a2n+1=a2n-2(2n)=a2n-4n,a2n+a2n+1=2a2n-4n=2(bn+2)-4n=2bn-4(n-1),∴Tn=a1+a2+a3+…+a2n+a2n+1=a1+(a2+a3)+…+(a2n+a2n+1)=1+2b1+…+[2bn-4(n-1)]=1+2(b1+b2+…+bn)-4[1+2+…+(n-1)]=1+2×-2n(n-1)=1+-2n(n-1)=
∴Sn>Tn
分析:(1)a2=,a2n==,由bn=a2n-2,能导出{bn}的通项公式.
(2)由,知Sn=|b1|+|b2|+…+|bn|==1-.由a2n+1=a2n-2(2n)=a2n-4n,a2n+a2n+1=2a2n-4n=2(bn+2)-4n=2bn-4(n-1),知Tn=a1+(a2+a3)+…+(a2n+a2n+1)=1+2b1+…+[2bn-4(n-1)]=1+2(b1+b2+…+bn)-4[1+2+…+(n-1)]=.由此能够导出Sn>Tn
点评:本题考查数列的综合运用,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在数列{an}中,
a
 
1
=1
an=
1
2
an-1+1
(n≥2),则数列{an}的通项公式为an=
2-21-n
2-21-n

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a 1=
1
3
,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=
1
an
(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{
an
n
}的前n项和为Tn,证明:
1
3
Tn
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a=
12
,前n项和Sn=n2an,求an+1

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,a1=a,前n项和Sn构成公比为q的等比数列,________________.

(先在横线上填上一个结论,然后再解答)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省汕尾市陆丰市碣石中学高三(上)第四次月考数学试卷(理科)(解析版) 题型:解答题

在数列{an}中,a,并且对任意n∈N*,n≥2都有an•an-1=an-1-an成立,令bn=(n∈N*).
(Ⅰ)求数列{bn}的通项公式;
(Ⅱ)设数列{}的前n项和为Tn,证明:

查看答案和解析>>

同步练习册答案