精英家教网 > 高中数学 > 题目详情
给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如图所示:由此推断,当n=6时,黑色正方形互不相连的着色方案共有多少种,至少有两个黑色正方形相连的着色方案共有多少种?
分析:根据所给的涂色的方案,观测相互之间的方法数,得到规律,根据这个规律写出当n取不同值时的结果数;利用给小正方形涂色的所有法数减去黑色正方形互不相邻的着色方案,得到结果.
解答:解:设n个正方形时黑色正方形互不相邻的着色方案数为an
由图形知:
a1=2,a2=3,
a3=5=2+3=a1+a2
a4=8=3+5=a2+a3
由此推断a5=a3+a4=5+6=13,a6=a4+a5=8+13=21,
故黑色正方形互不相邻着色方案共有21种;
由于给6个正方形着黑色或白色,每一个小正方形有2种方法,
所以一共有2×2×2×2×2×2=26=64种方法,
由于黑色正方形互不相邻着色方案共有21种,
所以至少有两个黑色正方形相邻着色方案共有64-21=43种着色方案,
答:当n=6时,黑色正方形互不相连的着色方案共有21种,至少有两个黑色正方形相连的着色方案共有43种.
点评:本题考查简单的排列组合及简单应用,考查观察规律,找出结果的过程,是一个比较麻烦的题目,作为高考题目比前几年的排列组合问题相对简单点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

15、给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如图所示:
由此推断,当n=6时,黑色正方形互不相邻的着色方案共有
21
种,至少有两个黑色正方形相邻的着色方案共有
43
种,(结果用数值表示)

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二第一次月考理科数学试卷(解析版) 题型:填空题

给n个自上而下相连的正方形着黑色或白色,当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图1所示,由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有_________.

(结果用数值表示)

n=1     

n=2     

n=3   

n=4

 

查看答案和解析>>

科目:高中数学 来源:新课标高三数学组合、排列与组合的综合问题专项训练(河北) 题型:填空题

给n个自上而下相连的正方形着黑色或白色,当n≤4时,在所有不同的着色方案中,黑色正方形互不相邻的着色方案如图1所示,由此推断,当n=6时,黑色正方形互不相邻的着色方案共有__________种,至少有两个黑色正方形相邻的着色方案共有_________.

(结果用数值表示)

n=1     

n=2     

n=3   

n=4

 

查看答案和解析>>

科目:高中数学 来源:2012-2013学年福建师大附中高二(下)期末数学试卷(理科)(解析版) 题型:填空题

给n个自上而下相连的正方形着黑色或白色.当n≤4时,在所有不同的着色方案中,黑色正方形互不相连的着色方案如图所示:由此推断,当n=6时,黑色正方形互不相邻的着色方案共有    种,至少有两个黑色正方形相邻的着色方案共有    种,(结果用数值表示)

查看答案和解析>>

同步练习册答案