精英家教网 > 高中数学 > 题目详情
设Sn是正项数列{an}的前n项和,且an和Sn满足:,则Sn=   
【答案】分析:利用数列递推式,再写一式,两式相减,求出数列的通项,即可得到结论.
解答:解:∵4Sn=(an+1)2
∴n≥2时,4Sn-1=(an-1+1)2
作差,得4(Sn-Sn-1)=(an+1)2-(an-1+1)2
∴4an=(an+an-1+2)(an-an-1),
整理,得(an+an-1)(an-an-1-2)=0.
∵{an}正数数列,∴an-an-1=2,
∵4S1=(a1+1)2,∴a1=1,
∴an=2n-1
∴4Sn=(2n-1+1)2
∴Sn=n2
故答案为:n2
点评:本题考查数列递推式,考查数列的通项与求和,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果一个数列的各项的倒数成等差数列,我们把这个数列叫做调和数列
(1)若a2,b2,c2成等差数列,证明b+c,c+a,a+b成调和数列;
(2)设Sn是调和数列{
1n
}
的前n项和,证明对于任意给定的实数N,总可以找到一个正整数m,使得当n>m时,Sn>N.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=1,a2=a(a>0).正项数列{bn}满足bn2=anan+1(n∈N*).若 {bn}是公比为
2
的等比数列
(1)求{an}的通项公式;
(2)若a=
2
,Sn为{an}的前n项和,记Tn=
17Sn-S2n
an+1
Tn0为数列{Tn}的最大项,求n0

查看答案和解析>>

科目:高中数学 来源: 题型:

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    2
  4. D.
    5

查看答案和解析>>

科目:高中数学 来源:2011年广东省广州市执信中学高考数学三模试卷(文科)(解析版) 题型:选择题

设Sn是正项等比数列{an}的前n项和,S2=4,S4=20则数列的首项a1=( )
A.
B.
C.2
D.5

查看答案和解析>>

同步练习册答案