精英家教网 > 高中数学 > 题目详情
已知椭圆C1+=1(a>b>0)的长轴长为4,离心率为,F1、F2分别为其左右焦点.一动圆过点F2,且与直线x=-1相切.
(Ⅰ)(ⅰ)求椭圆C1的方程; (ⅱ)求动圆圆心C轨迹的方程;
(Ⅱ)在曲线上C有两点M、N,椭圆C1上有两点P、Q,满足MF2共线,共线,且=0,求四边形PMQN面积的最小值.
【答案】分析:(Ⅰ)(ⅰ)由题设知:,由此能求出椭圆方程.
(ⅱ)由已知可得动圆圆心轨迹为抛物线,且抛物线C的焦点为(1,0),准线方程为x=1,由此能求出动圆圆心轨迹方程.
(Ⅱ)当直线斜率不存在时,|MN|=4,此时PQ的长即为椭圆长轴长,|PQ|=4,从而四边形PMQN面积为8;设直线MN的斜率为k,直线MN的方程为:y=k(x-1),直线PQ的方程为y=,设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),由,得k2x2-(2k2+4)x+k2=0,由抛物线定义可知:|MN|=4+,由此求出SPMQN=>8,所以四边形PMQN面积的最小值为8.
解答:解:(Ⅰ)(ⅰ)由题设知:
∴a=2,c=1,b=
∴所求的椭圆方程为
(ⅱ)由已知可得动圆圆心轨迹为抛物线,
且抛物线C的焦点为(1,0),
准线方程为x=1,则动圆圆心轨迹方程为C:y2=4x.
(Ⅱ)当直线斜率不存在时,|MN|=4,
此时PQ的长即为椭圆长轴长,|PQ|=4,
从而=8,
设直线MN的斜率为k,直线MN的方程为:y=k(x-1),
直线PQ的方程为y=
设M(x1,y1),N(x2,y2),P(x3,y3),Q(x4,y4),
,消去y可得k2x2-(2k2+4)x+k2=0,
由抛物线定义可知:
|MN|=|MF2|+|NF2|=x1+1+x2+1
==4+
,消去y得(3k2+4)x2-8x+4-12k2=0,
从而|PQ|==
∴SPMQN==
=
=24
令1+k2=t,∵k2>0,则t>1,
则SPMQN=
=
=
因为3-=4-(1+2∈(0,3),
所以SPMQN=>8,
所以四边形PMQN面积的最小值为8.
点评:本题考查椭圆方程和轨迹方程的求法,考查四边形面积的最小值的求法.综合性强,难度大,是高考的重点.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1=1,抛物线C2:(y-m)2=2px(p>0),且C1C2的公共弦AB过椭圆C1的右焦点.

(1)当ABx轴时,求mp的值,并判断抛物线C2的焦点是否在直线AB上;

(2)若p=且抛物线C2的焦点在直线AB上,求m的值及直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年浙江省宁波市慈溪中学高三(上)第一次月考数学试卷(文科)(解析版) 题型:选择题

已知椭圆C1=1 (a>b>0)与双曲线C2:x2-=1 有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点.若C1恰好将线段AB三等分,则( )
A.a2=
B.a2=3
C.b2=
D.b2=2

查看答案和解析>>

科目:高中数学 来源:2012-2013学年吉林省长春十一高高二(下)期初数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1=1(a>b>0)的左、右焦点分别为F1、F2,其中F2也是抛物线C2:y2=4x的焦点,M是C1与C2在第一象限的交点,且
(I)求椭圆C1的方程;   
(Ⅱ)已知菱形ABCD的顶点A、C在椭圆C1上,顶点B、D在直线7x-7y+1=0上,求直线AC的方程.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广东省中山一中等六校联考高三(上)12月月考数学试卷(理科)(解析版) 题型:解答题

已知椭圆C1+=1(a>b>0)的离心率为,直线l:x-y+=0与椭圆C1相切.
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直与椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)若A(x1,2),B(x2,y2),C(x,y)是C2上不同的点,且AB⊥BC,求实数y的取值范围.

查看答案和解析>>

同步练习册答案