精英家教网 > 高中数学 > 题目详情
已知tanθ=-
3
4
,θ为第四象限角,则sinθ=
-
3
5
-
3
5
分析:由tanθ=-
3
4
得出cosθ=-
4
3
sinθ,再利用sin2θ+cos2θ=1求解即可.
解答:解:∵tanθ=-
3
4

∴cosθ=-
4
3
sinθ
∵sin2θ+cos2θ=1,
∴sin2θ=
9
25

∵θ为第四象限角,
∴sinθ=-
3
5

故答案为:-
3
5
点评:本题考查同角三角函数基本关系式,三角函数值在各象限的符号.要做到牢记公式,并熟练应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=-
3
4
 , 且α∈(
π
2
 , 
2
)
则sinα•cosα的值为(  )
A、
12
25
B、-
12
25
C、
25
12
D、-
25
12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-
3
4
tan(α+
π
4
)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=-
3
4
,α
是第二象限角,则sin(α-
π
4
)的值为
7
2
10
7
2
10

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=
3
4
  cos(α+β)=-
12
13
,且α
 
 
β∈(0
 
 
π
2
)

(1)求
2cos2
α
2
-sinα-1
2
sin(α+
π
4
)
的值; (2)求cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanθ=
3
4
,π<θ<
3
2
π
,试求出sin
θ
2
,cos
θ
2
的值.

查看答案和解析>>

同步练习册答案