精英家教网 > 高中数学 > 题目详情
11.解下列不等式:
(1)$\frac{4}{x}≤x$
(2)|x-1|+|2x-1|<3.

分析 分别分类讨论,即可求出不等式的解集.

解答 解:(1)$\frac{4}{x}≤x$,
∴$\left\{\begin{array}{l}{x>0}\\{{x}^{2}≥4}\end{array}\right.$或$\left\{\begin{array}{l}{x<0}\\{{x}^{2}≤4}\end{array}\right.$,
∴x≥2,或-2≤x<2,
∴原不等式的解集为{x|-2≤x<0或x≥2};
(2)当x≥1时,x-1+2x-1<3,解得x<$\frac{5}{3}$,即1≤x<$\frac{5}{3}$,
当$\frac{1}{2}$≤x<1时,1-x+2x-1<3,解得x<3,即$\frac{1}{2}$≤x<1,
当x<$\frac{1}{2}$时,1-x+1-2x<3,解得x>-$\frac{1}{3}$,即-$\frac{1}{3}$<x$<\frac{1}{2}$,
综上所述,不等式的解集为$\{x|-\frac{1}{3}<x<\frac{5}{3}\}$.

点评 本题考查了不等式的解法,关键是分类讨论,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知椭圆C1与双曲线C2的公共焦点F1,F2,点P是曲线C1与C2的一个交点,并且PF1⊥PF2,e1,e2分别是椭圆和双曲线的离心率,则4e${\;}_{1}^{2}$+e${\;}_{2}^{2}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知P,Q是圆心在坐标原点O的单位圆上的两点,分别位于第一象限和第四象限,且P点的纵坐标为$\frac{4}{5}$,Q点的横坐标为$\frac{5}{13}$,则cos∠POQ=-$\frac{33}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.(Ⅰ)已知sinθ,cosθ是方程4x2-4mx+2m-1=0的两个根,$\frac{3π}{2}$<θ<2π,求角θ.
(Ⅱ)已知一扇形的中心角为α,所在圆的半径为R,若α=60°,R=10cm,求扇形的弧与弦所围成的弓形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=f(x)(f(x)≠0)的图象与x=1的交点个数是(  )
A.1B.2C.0或1D.1或2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16. 已知两个圆锥有公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的$\frac{3}{16}$,求这两个圆锥中,体积较小者与体积较大者的高的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x<a},B={x|1<x<2},B⊆A,则实数a的取值范围是(  )
A.a≤1B.a<1C.a≥2D.a>2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合A={x|x2-2x-3<0,x∈R},B={x|ax2-x+3<0,x∈R};
(1)当a=2时,求A∩B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{\sqrt{x}-1}{lgx-\frac{1}{2}}$的定义域是(  )
A.(0,$\sqrt{10})∪(\sqrt{10},+∞)$∪($\sqrt{10}$,+∞)B.($\frac{3}{2},+∞$)
C.$[1,\frac{3}{2})∪(\frac{3}{2},+∞)$D.$(1,\sqrt{10})∪(\sqrt{10},+∞)$

查看答案和解析>>

同步练习册答案