精英家教网 > 高中数学 > 题目详情
下列几个命题
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0.
②函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④设函数y=f(x)定义域为R且满足f(x-1)=f(1-x),则函数y=f(x)的图象关于y轴对称.
⑤曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的有
 
分析:用根的分布来解,令f(x)=x2+2(m-1)x+2m+6,一个比0大,一个比0小,只要f(0)<0即可.
函数 y=
x2-1
+
1-x2
=0,既是偶函数,又是奇函数;函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-2,2];设函数y=f(x)定义域为R且满足f(1-x)=f(1-x),则它的图象关于x=0对称;一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,画出函数的图象,根据图象进行判断:m的值不可能是1.
解答:解:①方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;正确;
②函数 y=
x2-1
+
1-x2
=0,函数的定义域为{-1,1},∴y=0既是奇函数又是偶函数既是偶函数,故②不正确;
精英家教网③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-2,2].故③不正确;
④设函数y=f(x)定义域为R且满足f(x-1)=f(1-x),则有:f(-x)=f(x),它的图象关于y轴对称.故④正确;
⑤一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,根据函数y=|3-x2|的图象可知:m的值不可能是1.故⑤正确.
故答案为:①④⑤.
点评:考查了函数思想,转化思想,属中档题,是个基础题.还考查函数图象的对称变化和一元二次方程根的问题,以及函数奇偶性的判定方法等基础知识,考查学生灵活应用知识分析解决问题的能力,数形结合法是解答本类题的重要方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列几个命题
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0;
②A=Q,B=Q,f:x→
1
x
,这是一个从集合A到集合B的映射;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④函数 f(x)=|x|与函数g(x)=
x2
是同一函数;
⑤一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的有
①,④,⑤
①,④,⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

下列几个命题
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0.
②函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称.
⑤一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的有
①⑤
①⑤

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列几个命题
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0.
②函数y=
x2-1
+
1-x2
是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④设函数y=f(x)定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称.
⑤一条曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的有______.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年陕西师大附中高一(上)期中数学试卷(解析版) 题型:填空题

下列几个命题
①方程x2+(a-3)x+a=0的有一个正实根,一个负实根,则a<0.
②函数是偶函数,但不是奇函数.
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1].
④设函数y=f(x)定义域为R且满足f(x-1)=f(1-x),则函数y=f(x)的图象关于y轴对称.
⑤曲线y=|3-x2|和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确的有   

查看答案和解析>>

同步练习册答案