精英家教网 > 高中数学 > 题目详情

如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an.

(1)        

(2)         .

 

【答案】

(1)18;(2).

【解析】

试题分析:(1)设三种不同颜色分别为甲、乙、丙三种.时,第1区域有3种选择, 第2区域有2种选择,第3区域有2种选择,因为第4区域要与第1区域颜色不同,故对第3区域的选择分类讨论:当第3区域与第1区域颜色相同时,第4区域有2种选择;当第3区域与第1区域颜色不同时,第4区域仅有1种选择.所以;(2)当将圆分成n个区域,用3种不同颜色给每一个区域染色时,第1区域有3种染色方案,第2区域至第区域有2种染色方案.此时考虑第区域也有2种涂色方案,在此情况下有两种情况:

情况一:第区域与第1区域同色,此时相当将这两区域重合,这时问题转化为3种不同颜色给圆上个区域涂色,即为种染色方案;

情况二:第区域与第1区域不同色,此时问题就转化为用3种不同颜色给圆上个区域染色,且相邻区域颜色互异,即此时的情况就是.根据分类原理可知,且满足初始条件:.

即递推公式为,由变形得,所以数列是以-1为公比的等比数列.所以,即.当时,易知有3种染色方法,即,不满足上述通项公式;当时,易知有种染色方法,即,满足上述通项公式;当时,易知有种染色方法,即,满足上述通项公式.

综上所述,.

考点:数列的递推公式与通项公式、排列组合

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an.求
(Ⅰ)a1,a2,a3,a4
(Ⅱ)an与an+1(n≥2)的关系式;
(Ⅲ)数列{an}的通项公式an,并证明an≥2n(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,将圆分成n个区域,用3种不同颜色给每个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an
(1)求a1,a2,a3,a4
(2)求证:an+an+1=3×2n(n≥2);
(3)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an
(1)a4=
 

(2)an=
 

查看答案和解析>>

科目:高中数学 来源:重庆二模 题型:解答题

如图,将圆分成n个区域,用3种不同颜色给每一个区域染色,要求相邻区域颜色互异,把不同的染色方法种数记为an.求
(Ⅰ)a1,a2,a3,a4
(Ⅱ)an与an+1(n≥2)的关系式;
(Ⅲ)数列{an}的通项公式an,并证明an≥2n(n∈N*).
精英家教网

查看答案和解析>>

同步练习册答案