精英家教网 > 高中数学 > 题目详情
已知向量
OA
OB
为单位向量,且
OA
OB
=
1
4
,点C是向量
OA
OB
的夹角内一点,|
OC
|=4
OC
OB
=
7
2
,若数列{an}满足
OC
=
3an+1(an+1)
2an
OB
+a1
OA
,则a6=(  )
分析:根据
OB
OC
=
7
2
列出一个关系式①,再根据
OA
OB
=
1
4
,可以求得
OA
OB
夹角的余弦值,同理可以求出
OB
OC
夹角的余弦值,再根据角之间的关系,可以求得
OA
OC
的夹角的余弦值,从而利用
OA
OC
列出一个等式②,联立①②即可得a1和递推关系,根据递推关系即可求得.
解答:解:∵
OC
=
3an+1(an+1)
2an
OB
+a1
OA

OB
OC
=
3an+1(an+1)
2an
OB
OB
+a1
OA
OB

∵向量
OA
OB
为单位向量,且
OA
OB
=
1
4
OC
OB
=
7
2

7
2
=
3an+1(an+1)
2an
+
1
4
a1  ①
OA
OB
的夹角为θ,
OB
OC
的夹角为α,
OA
OC
的夹角为β,
OA
OB
=|
OA
||
OB
|cosθ=
1
4
,∴cosθ=
1
4
,∵θ∈[0,π],∴sinθ=
15
4

OB
OC
=|
OB
||
OC
|cosα=
7
2
,∴cosα=
7
8
,∵α∈[0,π],∴sinα=
15
8

∴cosβ=cos(θ-α)=cosθcosα+sinθsinα=
1
4
×
7
8
+
15
4
×
15
8
=
11
16

OA
OC
=|
OA
||
OC
|cosβ=1×4×
11
16
=
11
4

OA
OC
=
3an+1(an+1)
2an
OA
OB
+a1
OA
OA

11
4
=
3an+1(an+1)
2an
×
1
4
+a1  ②
由①②可解得,a1=2,
3an+1(an+1)
2an
=3,
3an+1(an+1)
2an
=3可得an+1=
2an
an+1

a2=
2a1
a1+1
=
4
3
a3=
2a2
a2+1
=
8
7
a4=
2a3
a3+1
=
16
15
a5=
2a4
a4+1
=
32
31
a6=
2a5
a5+1
=
64
63

故选A.
点评:本题考查了平面向量的数量积、三角函数求值、数列的递推公式,综合性非常强,对学生的要求很高,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
OA
OB
的夹角为
π
3
|
OA
|=4
|
OB
|=1
,若点M在直线OB上,则|
OA
-
OM
|
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
OA
OB
夹角为θ,θ∈(0,
π
2
)
|
OA
|=3
,点M在直线OB上,且|
OA
+
OM
|
的最小值为
3
2
,则sinθ的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知向量
OA
OB
关于y轴对称,向量
a
=(1,0),满足不等式
OA2
+
a
AB
≤0的点A(x,y)的集合为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区二模)已知向量
OA
OB
的夹角为
π
3
| OA|
=4,
| OB|
=1
,若点M在直线OB上,则|
OA
-
OM
|的最小值为
2
3
2
3

查看答案和解析>>

同步练习册答案