精英家教网 > 高中数学 > 题目详情
已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1∨p2,q2:p1∧p2;q3:(¬p1)∨p2;q4:p1∨(¬p2);其中为真命题的是(  )
分析:利用导数知识分别对函数y=2x-2-x,y=2x+2-x,的单调性,从而可判断p1,p2的真假,然后根据复合命题的真假关系即可判断
解答:解:∵y=2x-2-x
∴y‘=2x+2-x>0恒成立
∴y=2x-2-x在R上为增函数,即题p1为真命题
∵y=2x+2-x
∴y’=2x-2-x
由y’=2x-2-x>0可得x>0,即y=2x+2-x在(0,+∞)上单调递增,在(-∞,0)上单调 递减
∴p2:函数y=2x+2-x在R上为减函数为假命题
根据复合命题的真假关系可知,q1:p1∨p2为真命题
q2:p1∧p2为假命题
q3:(¬p1)∨p2为假命题
q4:p1∨(¬p2)为真命题
故选C
点评:本题主要考查了函数的导数在指数函数的单调性,复合命题的真假关系的应用,属于知识的综合应用
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p1:函数y=2x-2-x在R为增函数,p2:函数y=2x+2-x在R为减函数,则在命题q1:p1∨p2,q2:p1∧p2,q3:(¬p1)∨p2和q4:p1∧(¬p2)中,真命题是(  )
A、q1,q3B、q2,q3C、q1,q4D、q2,q4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题P1:函数y=(
3
2
)x-3+2a
有负零点;命题P2:f(x)=
4+ax
a-1
(a≠1)
在区间[-3,-1]是增函数.若P1,P2都是真命题,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p1:函数y=ln(x+
1+x2
)是奇函数,p2:函数y=x
1
2
为偶函数,则在下列四个命题:
①p1∨p2;  ②p1∧p2;  ③(¬p1)∨(p2);  ④p1∧(¬p2)中,真命题的序号是
①④
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p1:函数y=mx-m-x(m>0且m≠1)在R上为增函数,命题P2:ac≤0是方程ax2+bx+c=0有实根的充分不必要条件,则在命题q1:p1Ⅴp2,q2:p1∧p2,q3:p1∧(¬p2),q4:(¬p1)∧(¬p2)中真命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数,则在命题q1:p1或p2;q2:p1且p2;q3:(¬p1)或p2;q4:p1且(¬p2)中,真命题有
q1,q4
q1,q4

查看答案和解析>>

同步练习册答案