【题目】如图,四棱锥
中,底面
是矩形,面
底面
,且
是边长为
的等边三角形,
在
上,且
面
.
(1)求证:
是
的中点;
(2)在
上是否存在点
,使二面角
为直角?若存在,求出
的值;若不存在,说明理由.
【答案】(1) 见解析;(2)
.
【解析】试题分析:(1)连
交
于
可得
是
中点,再根据
面
可得
进而根据中位线定理可得结果;(2)取
中点
,由(1)知
两两垂直. 以
为原点,
所在直线分别为
轴,
轴,
轴建立空间直角坐标系,求出面
的一个法向量
,用
表示面
的一个法向量
,由
可得结果.
试题解析:(1)证明:连
交
于
,连
是矩形,
是
中点.又
面
,且
是面
与面
的交线,
是
的中点.
![]()
(2)取
中点
,由(1)知
两两垂直. 以
为原点,
所在直线分别为
轴,
轴,
轴建立空间直角坐标系(如图),则各点坐标为
.
设存在
满足要求,且
,则由
得:
,面
的一个法向量为
,面
的一个法向量为
,由
,得
,解得
,故存在
,使二面角
为直角,此时
.
科目:高中数学 来源: 题型:
【题目】已知小张每次射击命中十环的概率都为40%,现采用随机模拟的方法估计小张三次射击恰有两次命中十环的概率,先由计算器产生0到9之间取整数值的随机数,指定2,4,6,8表示命中十环,0,1,3,5,7,9表示未命中十环,再以每三个随机数为一组,代表三次射击的结果,经随机模拟产生了如下20组随机数:
321 421 292 925 274 632 800 478 598 663 531 297 396
021 506 318 230 113 507 965
据此估计,小张三次射击恰有两次命中十环的概率为()
A. 0.25B. 0.30C. 0.35D. 0.40
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增十三里;驽马初日行九十七里,日减半里;良马先至齐,复还迎驽马,二马相逢.根据该问题设计程序框图如下,若输入
,则输出
的值是( )
![]()
A. 8 B. 9 C. 12 D. 16
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列四个命题中,其中错误的个数是()
①经过球面上任意两点,可以作且只可以作一个大圆;
②经过球直径的三等分点,作垂直于该直径的两个平面,则这两个平面把球面分成三部分的面积相等;
③球的面积是它大圆面积的四倍;
④球面上两点的球面距离,是这两点所在截面圆上,以这两点为端点的劣弧的长.
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】时下,租车自驾游已经比较流行了.某租车点的收费标准为:不超过
天收费
元,超过
天的部分每天收费
元(不足
天按
天计算).甲、乙两人要到该租车点租车自驾到某景区游览,他们不超过
天还车的概率分别为
和
,
天以上且不超过
天还车的概率分别为
和
,两人租车都不会超过
天.
(1)求甲所付租车费比乙多的概率;
(2)设甲、乙两人所付的租车费之和为随机变量
,求
的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】f(x)的定义域为(0,+∞),且对一切x>0,y>0都有f
=f(x)-f(y),当x>1时,有f(x)>0。
(1)求f(1)的值;
(2)判断f(x)的单调性并证明;
(3)若f(6)=1,解不等式f(x+3)-f
<2;
(4)若f(4)=2,求f(x)在[1,16]上的值域。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的函数f(x)=2x-
.
(1)若f(x)=
,求x的值;
(2)若2tf(2t)+mf(t)≥0对于t∈[1,2]恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点曲线
的一个焦点,
为坐标原点,点
为抛物线
上任意一点,过点
作
轴的平行线交抛物线的准线于
,直线
交抛物线于点
.
(Ⅰ)求抛物线
的方程;
(Ⅱ)求证:直线
过定点
,并求出此定点的坐标.
【答案】(I)
;(II)证明见解析.
【解析】试题分析:(Ⅰ)将曲线
化为标准方程,可求得
的焦点坐标分别为
,可得
,所以
,即抛物线的方程为
;(Ⅱ)结合(Ⅰ),可设
,得
,从而直线
的方程为
,联立直线与抛物线方程得
,解得
,直线
的方程为
,整理得
的方程为
,此时直线恒过定点
.
试题解析:(Ⅰ)由曲线
,化为标准方程可得
, 所以曲线
是焦点在
轴上的双曲线,其中
,故
,
的焦点坐标分别为
,因为抛物线的焦点坐标为
,由题意知
,所以
,即抛物线的方程为
.
(Ⅱ)由(Ⅰ)知抛物线
的准线方程为
,设
,显然
.故
,从而直线
的方程为
,联立直线与抛物线方程得
,解得![]()
①当
,即
时,直线
的方程为
,
②当
,即
时,直线
的方程为
,整理得
的方程为
,此时直线恒过定点
,
也在直线
的方程为
上,故直线
的方程恒过定点
.
【题型】解答题
【结束】
21
【题目】已知函数
, ![]()
(Ⅰ)当
时,求函数
的单调递减区间;
(Ⅱ)若
时,关于
的不等式
恒成立,求实数
的取值范围;
(Ⅲ)若数列
满足
,
,记
的前
项和为
,求证:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com