精英家教网 > 高中数学 > 题目详情

已知函数数学公式
(Ⅰ)求函数f(x)的最小正周期及单调递增区间;
(Ⅱ)△ABC内角A、B、C的对边长分别为a、b、c,若数学公式,求a的值.

解:(Ⅰ)∵
∴函数f(x)的最小正周期为2π,
∵正弦函数的递增区间为[2kπ-,2kπ+],即2kπ-≤x-≤2kπ+
∴2kπ-≤x≤2kπ+
则函数f(x)的递增区间为(k∈Z );(6分)
(Ⅱ)根据题意得:

∵0<B<π,∴
,即. …(9分)
由余弦定理得:b2=a2+c2-2accosB,
,即a2-3a+2=0,
故a=1或a=2. …(12分)
分析:(Ⅰ)利用两角差的正弦、余弦函数公式及特殊角的三角函数值把f(x)化为一个角的正弦函数,然后利用周期公式T=即可求出f(x)的最小正周期;根据正弦函数的递增区间列出关于x的不等式,求出不等式的解集得到x的范围,即为函数f(x)的递增区间;
(Ⅱ)把x=B代入第一问求出f(x)的解析式,让其值等于-,得到sin(B-)的值,由B的范围求出B-的范围,利用特殊角的三角函数值即可列出关于B的方程,求出方程的解得到B的度数,然后由b,c及cosB的值,利用余弦定理即可求出a的值.
点评:此题考查了三角函数的周期性及其求法,正弦函数的单调性,以及余弦定理,灵活运用三角函数的恒等变换把f(x)的解析式化为一个角的正弦函数是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数)在上函数值总小于,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年山东省青岛市高三3月统一质量检测考试(第二套)理科数学试卷(解析版) 题型:解答题

已知函数

1的最

2当函数自变量的取值区间与对应函数值的取值区间相同时,这样的区间称为函数的保值区间.,试问函数上是否存在保值区间?若存在,请求出一个保值区间;若不存在,请说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2014届湖北孝感高中高三年级九月调研考试理科数学试卷(解析版) 题型:解答题

已知函数的定义域为,若上为增函数,则称为“一阶比增函数”;若上为增函数,则称为“二阶比增函数”.我们把所有“一阶比增函数”组成的集合记为,所有“二阶比增函数”组成的集合记为.

(Ⅰ)已知函数,若,求实数的取值范围;

(Ⅱ)已知的部分函数值由下表给出,

 求证:

(Ⅲ)定义集合

请问:是否存在常数,使得,有成立?若存在,求出的最小值;若不存在,说明理由.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年甘肃省武威五中高一(下)3月月考数学试卷(解析版) 题型:解答题

已知函数,编写一个程序求函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=试画出求函数值的程序框图.

查看答案和解析>>

同步练习册答案