精英家教网 > 高中数学 > 题目详情
函数f(x)的定义域为R,并满足以下条件:
①对任意的x∈R,有f(x)>0;
②对任意的x,y∈R,都有f(xy)=[f(x)]y
f(
13
)>1

(Ⅰ)求f(0)的值;  
(Ⅱ)求证:f(x)是(-∞,+∞)上的单调递增函数; 
(Ⅲ)解关于x的不等式:[f(x-2a)](x+1)>1.
分析:(Ⅰ)可以令y=0,代入f(xy)=[f(x)]y,即可求得f(0)的值;
(Ⅱ)任取x1,x2∈R,且x1<x2,可令x1=
1
3
P1,x2=
1
3
P2,故p1<p2,再判断f(x1)-f(x2)的符号,从而可证其单调性;,
(Ⅲ)根据f(x)是增函数,利用f(0)=1,代入不等式,再利用单调性进行求解;
解答:解:(1):(1)∵对任意x∈R,有f(x)>0,
∴令x=0,y=2得:f(0)=[f(0)]2⇒f(0)=1;
(2)任取x1,x2∈R,且x1<x2,则令x1=
1
3
P1,x2=
1
3
P2,故p1<p2
∵函数f(x)的定义域为R,并满足以下条件:①对任意x∈R,有f(x)>0;②对任意x,y∈R,有f(xy)=[f(x)]y;③f(
1
3
)>1

∴f(x1)-f(x2)=f(
1
3
P1)-f(
1
3
P2)=[f(
1
3
)]P1-[f(
1
3
)]P2<0,
∴f(x1)<f(x2),
∴函数f(x)是R上的单调增函数.
(3)∵解关于x的不等式:[f(x-2a)](x+1)>1=f(0),f(x)是(-∞,+∞)上的单调递增函数,
∴f[(x-2a)x+1]>0,
∴f[(x-2a)(x+1)]=f(x-2a)x+1>0,∵对任意的x∈R,有f(x)>0;
∴(x-2a)(x+1)>0,比较2a与-1的大小
a=-
1
2
时,f(x)的解集为(-∞,-1)∪(-1,+∞);
a>-
1
2
时,即2a>-1,f(x)的解集为(-∞,-1)∪(2a,+∞);
a<-
1
2
时,即2a<-1,f(x)的解集为(-∞,2a)∪(-1,+∞).
点评:本题考查抽象函数及其应用,难点在于用单调函数的定义证明其单调递增时“任取x1,x2∈R,且x1<x2,则x1=
1
3
P1,x2=
1
3
P2,”这一步比较灵活需要学生的理解与应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案