精英家教网 > 高中数学 > 题目详情
双曲线
x2
a2
-
y2
b2
=1(a>0 b>0)
的左、右焦点分别为F1,F2,渐近线分别为l1,l2,点P在第一 象限内且在l1上,若l2⊥PF1,l2PF2,则双曲线的离心率是(  )
A.
5
B.2C.
3
D.
2
∵双曲线
x2
a2
-
y2
b2
=1(a>0 b>0)
的左、右焦点分别为F1,F2
渐近线分别为l1,l2,点P在第一 象限内且在l1上,
∴F1(-c,0)F2(c,0)P(x,y),
渐近线l1的直线方程为y=
b
a
x,渐近线l2的直线方程为y=-
b
a
x,
∵l2PF2,∴
y
x-c
=-
b
a
,即ay=bc-bx,
∵点P在l1上即ay=bx,
∴bx=bc-bx即x=
c
2
,∴P(
c
2
bc
2a
),
∵l2⊥PF1
bc
2a
3c
2
•(-
b
a
)=-1
,即3a2=b2
因为a2+b2=c2
所以4a2=c2,即c=2a,
所以离心率e=
c
a
=2.
故选B.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)
的中心和左焦点,点P为双曲线右支上的任意一点,则
OP
FP
的取值范围为(  )
A、[3-2
3
,+∞)
B、[3+2
3
,+∞)
C、[-
7
4
,+∞)
D、[
7
4
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1(a>0)
的一条准线方程为x=
3
2
,则a等于
 
,该双曲线的离心率为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设圆C的圆心为双曲线
x2
a2
-y2=1(a>0)
的左焦点,且与此双曲线的渐近线相切,若圆C被直线l:x-y+2=0截得的弦长等于
2
,则a等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若点O和点F(-2,0)分别是双曲线
x2
a2
-y2=1(a>0)的中心和左焦点,点P为双曲线右支上的一点,并且P点与右焦点F′的连线垂直x轴,则线段OP的长为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线
x2
a2
-y2=1
的一个焦点坐标为(-
3
,0)
,则其渐近线方程为(  )
A、y=±
2
x
B、y=±
2
2
x
C、y=±2x
D、y=±
1
2
x

查看答案和解析>>

同步练习册答案