精英家教网 > 高中数学 > 题目详情
f(n)=1+
1
2
+
1
3
+…+
1
n
(n∈N*)
,是否存在g(n),使得等式f(1)+f(2)+f(3)+…+f(n)+n=ng(n)f(n)总成立?若存在,请写出g(n)通项公式(不必说明理由);若不存在,说明理由.______.
f(1)=1
f(2)=1+
1
2

f(3)=1+
1
2
+
1
3


f(n)=1+
1
2
+
1
3
+…
1
n

所以f(1)+f(2)+f(3)+…+f(n)
=n×1+
1
2
(n-1)+
1
3
(n-2)…
1
n
[n-(n-1)]
=n[1+
1
2
+
1
3
+…
1
n
]-[
1
2
+
2
3
+
3
4
n-1
n
]
=nf(n)-[1-
1
2
+1-
1
3
+1-
1
4
…1-
1
n
]
=nf(n)-[(n-1)-f(n)+1]
=(n+1)f(n)-n
因为f(1)+f(2)+f(3)+…+f(n)+n=ng(n)f(n)
所以(n+1)f(n)=ng(n)f(n)
所以g(n)=
n+1
n

故答案为:存在,通项公式g(n)=
n+1
n
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+…+
1
n
,是否存在g(n),使等式f(1)+f(2)+…+f(n-1)=g(n)f(n)-1
对n≥2的一切自然数都成立,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+…+
1
n
, g(n)=lnn  (n∈N*)

(1)设an=f(n)-g(n),求a1,a2,a3,并证明{an}为递减数列;
(2)是否存在常数c,使f(n)-g(n)>c对n∈N*恒成立?若存在,试找出c的一个值,并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+
1
4
+…+
1
2n
,则f(k+1)-f(k)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+…+
1
n
,则f(2k)变形到f(2k+1)需增添项数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

f(n)=1+
1
2
+
1
3
+…+
1
n
,那么f(2k+1)-f(2k)=
1
2k+1
+
1
2k+2
+…+
1
2k+1
1
2k+1
+
1
2k+2
+…+
1
2k+1

查看答案和解析>>

同步练习册答案