精英家教网 > 高中数学 > 题目详情
(本题满分14分)
已知函数
(Ⅰ)当时,若上单调递增,求的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当是整数时,存在,使得的最大值,的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在,且上的函数,使当时,,当时,取得最大值的自变量的值构成以为首项的等差数列。
解:(Ⅰ)当时,
,则上单调递减,不符题意。
,要使上单调递增,必须满足
。 (4分)
(Ⅱ)若,则无最大值,故
为二次函数,
要使有最大值,必须满足,即
此时,时,有最大值。
取最小值时,,依题意,有

,∴,得,此时
∴满足条件的实数对。  (9分)            
(Ⅲ)当实数对时,        (14分)   
依题意,只需构造以2(或2的正整数倍)为周期的周期函数即可。
如对
此时,
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=(A>0,>0,),x∈[-3,0]的图象,且图象的最高点为B(-1,);赛道的中间部分为千米的水平跑到CD;赛道的后一部分为以O圆心的一段圆弧

(1)求的值和∠DOE的值;
(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=,求当“矩形草坪”的面积最大时的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知函数
(1)求函数的单调区间;
(2)若以函数图像上任意一点为切点的切线的斜率恒成立,求实数a的最小值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)给定函数
(1)试求函数的单调减区间;
(2)已知各项均为负的数列满足,求证:
(3)设为数列的前项和,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求函数的单调区间;
(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数在区间上总存在极值?
(Ⅲ)当时,设函数,若在区间上至少存在一个
使得成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)若存在实数,使得函数对其定义域上的任意实数分别满足,则称直线的“和谐直线”.已知为自然对数的底数);
(1)求的极值;
(2)函数是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则( ).
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知f(x)= 的导函数为,则为虚数单位)的值为(  )
A.-1-2iB.-2-2iC.-2+2iD.2-2i

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)设函数
(1)若的极值点,求a的值;
(2)若时,函数的图象恒不在的图象下方,求实数a的取值范围。

查看答案和解析>>

同步练习册答案