精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
49
+
y2
24
=1
上一点P与椭圆的两个焦点F1,F2连线的夹角为直角,则|PF1|•|PF2|=
48
48
分析:先设出|PF1|=m,|PF2|=n,利用椭圆的定义求得n+m的值,平方后求得mn和m2+n2的关系,代入△F1PF2的勾股定理中求得mn的值.
解答:解:设|PF1|=m,|PF2|=n,
由椭圆的定义可知m+n=2a=14,
∴m2+n2+2nm=196,
∴m2+n2=196-2nm
由勾股定理可知m2+n2=4c2=100,
求得mn=48
故答案为:48.
点评:本题主要考查了椭圆的应用,椭圆的简单性质和椭圆的定义.考查了考生对所学知识的综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线的渐近线方程为y=±2x,且与椭圆
x2
49
+
y2
24
=1
有相同的焦点,则其焦点坐标为
 
,双曲线的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线与椭圆
x2
49
+
y2
24
=1
共焦点,且以y=±
4
3
x
为渐近线,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)焦点在x轴上的椭圆,短轴上的一个端点与两个焦点为同一个正三角形的顶点,焦点与椭圆上点的最近距离为
3
,求椭圆标准方程.
(2)已知双曲线与椭圆
x2
49
+
y2
24
=1公共焦点,且以y=±
4
3
x为渐近线,求双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线与椭圆
x2
49
+
y2
24
=1
有共同的焦点,且以y=±
4
3
x
为渐近线.
(1)求双曲线方程.
(2)求双曲线的实轴长.虚轴长.焦点坐标及离心率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线与椭圆
x2
49
+
y2
24
=1
共焦点,且以y=±
4
3
x
为渐近线,求双曲线方程.

查看答案和解析>>

同步练习册答案