精英家教网 > 高中数学 > 题目详情
3.在△ABC中,A=120°,a=$\sqrt{3}$,b=1,则△ABC的面积为$\frac{\sqrt{3}}{4}$.

分析 由已知利用余弦定理可求c的值,利用三角形面积公式即可计算得解.

解答 解:在△ABC中,∵A=120°,a=$\sqrt{3}$,b=1,
∴由余弦定理a2=b2+c2-2bccosA,可得:3=1+c2+c,即c2+c-2=0,
∴解得:c=1或-2(舍去),
∴S△ABC=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×1×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{4}$.
故答案为:$\frac{\sqrt{3}}{4}$.

点评 本题主要考查了余弦定理,三角形面积公式在解三角形中的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数f(x)的定义域为R,其导函数为f′(x),对任意的x∈R,总有f(-x)+f(x)=$\frac{{x}^{2}}{2}$;当x∈(0,+∞)时,f′(x)<$\frac{x}{2}$,若f(4-m)-f(m)≥4-2m,则实数m的取值范围是(  )
A.[1,+∞]B.(-∞,1]C.(-∞,2]D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}满足an+1+an-1=an,且a1=1,a2=5,那么a1-a2+a3-…+a15-a16+a17的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在空间直角坐标系中,点A(1,3,-2),B(-2,3,2),则A,B两点间的距离为(  )
A.$\sqrt{14}$B.5C.$\sqrt{31}$D.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:?x0>0,2x0≥3,则¬p是(  )
A.$?x≤0{,_{\;}}{2^x}≥3$B.$?x≤0{,_{\;}}{2^x}<3$C.$?x>0{,_{\;}}{2^x}≤3$D.$?x>0{,_{\;}}{2^x}<3$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求抛物线y=4x2在点P($\frac{1}{2}$,1)的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,位于A处的海面观测站获悉,在其正东方向相距40海里的B处有一艘渔船遇险,并在原地等待营救.在A处南偏西30°且相距20海里的C处有一艘救援船,该船接到观测站通告后立即前往B处求助,则sin∠ACB=$\frac{\sqrt{21}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如果长方体三面的面积分别是$\sqrt{2},\sqrt{3},\sqrt{6}$,那么它的外接球的半径是(  )
A.$\sqrt{6}$B.$\frac{{\sqrt{6}}}{2}$C.$\sqrt{3}$D.$\frac{{3\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源:2016-2017学年江西吉安一中高二上段考一数学(理)试卷(解析版) 题型:选择题

下列四个命题中错误的个数是( )

①垂直于同一条直线的两条直线相互平行;

②垂直于同一个平面的两条直线相互平行;

③垂直于同一条直线的两个平面相互平行;

④垂直于同一个平面的两个平面相互平行.

A.1 B.2 C.3 D. 4

查看答案和解析>>

同步练习册答案