精英家教网 > 高中数学 > 题目详情
16.如果集合U={1,2,3,4,5,6,7,8},A={2,3,5,8},B={1,3,5,7},那么(∁UA)∩B等于(  )
A.{3,5}B.{1,3,4,5,6,7,8}C.{2,8}D.{1,7}

分析 根据补集和交集的定义,分别写出运算结果即可.

解答 解:集合U={1,2,3,4,5,6,7,8},A={2,3,5,8},
所以∁UA={1,4,6,7},
又B={1,3,5,7},
所以(∁UA)∩B={1,7}.
故选:D.

点评 本题考查了补集和交集的定义与应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.
(1)求数列{an}的通项公式;
(2)设${b_n}={3^n}•\sqrt{a_n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.中国柳州从2011年起每年国庆期间都举办一届国际水上狂欢节,到2016年已举办了六届,旅游部门统计在每届水上狂欢节期间,吸引了不少外地游客到柳州,这将极大地推进柳州的旅游业的发展,现将前五届水上狂欢节期间外地游客到柳州的人数统计如表:
年份2011年2012年2013年2014年2015年
水上狂欢节届编号 12345
外地游客人数 (单位:十万)0.60.80.91.21.5
(1)求y关于x的线性回归方程$\widehat{y}=\widehat{b}x+\widehat{a}$;
(2)利用(1)中的线性回归方程,预测2017年第7届柳州国际水上狂欢节期间外地游客到柳州的人数.
参考公式:$\widehat{b}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}}$,$\widehat{a}=\overline{y}-\widehat{b}\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的接法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2016这2016个数中能被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列{an},则此数列的项数为135.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,△ABC为正三角形,AB⊥AD,AC⊥CD,PA=AC,PA⊥平面ABCD.
(Ⅰ)点E在棱PC上,试确定点E的位置,使得PD⊥平面ABE;
(Ⅱ)求二面角A-PD-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若$tan(\frac{π}{6}+α)=\frac{1}{3}$,则tan($\frac{π}3}$+2α)=$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数y=$\sqrt{x-1}+\frac{1}{3-x}$的定义域是{x|x≥1且x≠3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)已知函数f(x)=$\frac{4}{x}$+9x,若x>0,求f(x)的最小值及此时的x值.
(2)解不等式(x+2)(3-x)≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知f(x)=3x-a×3-x是偶函数.则:
(1)a=-1;
(2)$f(x)<\frac{10}{3}$的解集为(-1,1).

查看答案和解析>>

同步练习册答案